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Abstract

Between 1883 and 1919, Andrew Carnegie funded the construction of over 1,500 public libraries

across the United States, reducing the costs of accessing knowledge for millions of people. We

study the e�ect of these libraries on innovation using new data on city-level patenting and a

novel control group: cities that quali�ed to receive a library grant and applied to be part of the

program, but did not build a library. Patenting in recipient towns increased by 7-11 percent in

the 20 years following library construction. We show that access to scienti�c knowledge and

increased opportunities to collaborate are possible mechanisms.
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And daily in the papers thou shalt read,
Of ten new libraries, in cities vast,

In villages, and Indian wigwams too,
In Texas ranches and Esquimaux huts,

In Heaven, Hell, and stations in between
– Upton Sinclair, 1902 poem

1 Introduction

�e recombination of existing ideas is a key component of the innovation process (e.g., Weitzman,

1998). Isaac Newton famously declared that his work was built “by standing upon the shoulders” of

past scienti�c thinkers. For this reason, researchers and policymakers alike believe that expanding

access to knowledge may promote innovation. Mokyr (2002) argues that the spread of institutions

that reduce the costs of accessing knowledge—such as national science academies and scienti�c

journals—contributed to the outset of the Industrial Revolution in Britain. Even today, governments

hope that expanding high speed internet and cell networks in developing countries might increase

innovative output by broadening access to knowledge (e.g., United Nations, 2018).

However, causal evidence that broadening access to knowledge increases innovation is scarce.

Researchers who want to study this link typically face two major hurdles. First, many institutions

that disseminate knowledge only do so in narrow ways or are targeted towards speci�c groups, such

as scientists (e.g., Bryan and Ozcan, 2021). Second, institutions that spread knowledge (e.g., colleges)

can have other simultaneous e�ects, like a�racting high-skilled immigrants, which makes it di�cult

to isolate the e�ects of access to knowledge from other factors that might also a�ect innovation (e.g.,

Andrews, 2021b).

In this paper, we study the rapid rollout of an institution that dramatically lowered knowledge

access costs for millions of people: the local public library. We estimate the e�ects on innovation of

more than 1,500 new, high-quality U.S. public libraries �nanced by the steel titan and philanthropist

Andrew Carnegie between 1883 and 1919. For residents of recipient towns, a Carnegie library was a

new—and o�en the only—local source of scienti�c, technical, and practical knowledge. �e library

provided citizens with new opportunities to exchange and access new ideas thanks to books and

magazines. Libraries also provided opportunities to interact with patrons with similar interests.

�e characteristics of public libraries make them particularly suited to studying the relationship
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between access to knowledge and innovation. First, public libraries are open to all, regardless of

income or social class. �is contrasts with other information-spreading institutions that are only

accessible to subsets of the population. �e public nature of libraries allows us to study the e�ects

of increased information on potential “lost Einsteins” (Bell et al., 2018)—groups underrepresented

in innovative and scienti�c outputs, such as women, di�erent ethnic groups, and those who live in

rural areas. Second, libraries are local institutions. Evidence shows that knowledge spillovers are

relatively local and sharply decay over space (e.g., Ja�e et al., 1993; Murata et al., 2014). �e histor-

ical rollout of libraries provides variation in information access across otherwise similar, narrowly-

de�ned geographic areas. Finally, libraries are unlikely to change the local innovation environment

in ways that are unrelated to information access—such as a�racting new businesses—allowing us to

isolate the e�ect of knowledge access.

To identify the causal e�ect of Carnegie libraries on innovation, we estimate di�erence-in-

di�erences models that exploit the sharp timing of library construction. We leverage a wealth of

institutional information that we gather on the Carnegie program to construct a novel control group.

We identify more than 200 cities that applied for the program, quali�ed to receive a library grant,

received preliminary construction approval, but ultimately did not execute the project. Many of

these cities rejected Carnegie’s donation due to his unpopularity, particularly among labor associ-

ations. We show that these cities are similar to cities that eventually built a library along various

demographic and economic characteristics. Importantly, the two groups of cities also follow parallel

patenting trends prior to library entry.

We �nd that patenting increases in towns that built Carnegie libraries relative to control cities.

Patenting starts diverging shortly a�er receiving a library grant, a pa�ern which is consistent with

the typical construction times observed in the data. Di�erences between cities that accepted and

rejected libraries peak between 5 and 15 years a�er acceptance. Overall, patenting in cities that ac-

cepted Carnegie libraries increased by approximately 7-11 percent in the 20 years a�er library entry.

We show that our �ndings are not driven by an increase in low-quality patenting or an increase in

city population. Both women and foreign-born patented more a�er libraries opened, suggesting that

public libraries helped expand access to knowledge for groups that were underrepresented in patent-

ing, although their relative contribution to patenting remained largely unchanged. We demonstrate

that our results are robust to a range of sample, measurement, and estimation choices. To the best of
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our knowledge, we are the �rst to provide estimates of the e�ect of public libraries on innovation.

We propose the existence of two mechanisms that could explain the link between libraries and

patenting that we describe. First, we test whether access to new library materials contributed to

patenting increases. To do this, we separately estimate e�ects by patent technology classes. We

�nd that libraries had the largest impact on classes related to practical trades, such as farming,

construction, and mechanical engineering, consistent with library collections. We observe smaller

e�ects in highly technical �elds, such as chemistry and physics, where innovation likely required

more human or physical capital. To further explore this mechanism, we test whether patents in

treated cities were more likely to cite books, prior patents, or magazines. We compile a list of

keywords commonly used to cite these materials and identify patents that contain these keywords

in their text. We �nd suggestive evidence that libraries increased both the probability of observing

a patent that cites prior work and the number of such patents.

Second, we test whether creative collaborations increased a�er libraries opened. We provide

evidence for this social channel by estimating the e�ect of Carnegie libraries on patents authored by

multiple inventors. Like today, libraries were a central gathering point for meetings and events in the

early 20th century. For example, in the 1920s, the Carnegie library in Cleveland, Ohio had a robust

series of social reading groups. In St. Louis, Missouri, a variety of groups met at the library, such as

“school clubs, groups of foreigners of many nationalities, women’s clubs of all kinds, mothers’ clubs,

parliamentary classes, socialists, religious meetings, dance clubs and classes, political clubs and

meetings, and musical organizations” (Learned, 1924). We �nd that multi-inventor patents increased

a�er libraries opened.

Related Literature. �is paper relates to three strands of the literature. First, we provide new

evidence on how broadening access to knowledge a�ects innovation. Prior work has largely focused

on the e�ects of expanding information access through the patent system or scienti�c literature,

likely impacting innovators and scientists. For example, a set of papers �nds that patent disclosures

facilitates future innovation (e.g., Graham and Hegde, 2015; Hegde and Luo, 2018; Gross, 2019) and

Furman et al. (2021) �nds that patent deposit libraries increased local patenting. Iaria et al. (2018)

�nd that shocks to international scienti�c cooperation during World War I reduced productivity for

scientists who relied on foreign research. Biasi and Moser (2021) �nd that stripping copyrights from

German scienti�c books in 1943 led to price declines for scienti�c books and a subsequent increase
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in the probability of citing those books in scienti�c articles, patents, and PhD theses. We contribute

to this literature by exploiting a distinct shock to information access caused by an easily accessible

institution that is open to all. Our results provide a historical complement to recent work on the

information-spreading power of the internet and websites like Wikipedia (e.g., Czernich et al., 2011;

Cardona et al., 2013; Akerman et al., 2015; �ompson and Hanley, 2018; Derksen et al., 2019; Xu

et al., 2019).

Second, we contribute to a literature studying how local institutions a�ect innovative activity.

Previous studies in this literature have mainly focused on colleges (e.g., Furman and MacGarvie,

2007; Aghion et al., 2009; Kantor and Whalley, 2014; Hausman, 2020; Kantor and Whalley, 2019;

Andrews, 2021b). �ese papers consistently �nd that a�er the establishment of a college, innovative

activity increases, although they disagree on the channels through which this e�ect operates, as

well as its magnitude. Relative to colleges, public libraries played a distinct role in disseminating in-

formation in the early 20th century. Libraries provided low-cost, state-of-the-art information across

disciplines, as well as information on the patenting process itself.

�ird, we contribute to an emerging literature on the impact of public libraries in the United

States. In addition to the work of library historians who have chronicled Carnegie’s programs (e.g.,

Bobinski, 1969; Jones, 1997), our work relates to recent papers on the political economy and devel-

opment of libraries. Kevane and Sundstrom (2014) outline the characteristics that predicted local

library entry in the early 20th century, including the positive impact of state library associations

(Kevane and Sundstrom, 2016b). Kevane and Sundstrom (2016a) estimate the e�ect of library entry

during the 20th century on short-run political outcomes. �ey �nd no clear relationship between

library entry and participation in the following election. We expand this work by studying human

capital and innovation outcomes and introducing a new control group. In work that began contem-

poraneously with this project, Karger (2021) estimates the e�ects of Carnegie libraries on long-run

schooling and occupation choices and �nds that libraries positively a�ected education and occu-

pational upskilling. We view our projects as complements, given our focus on the right tail of the

distribution of human capital (i.e., inventors). In a more modern context, Gilpin et al. (2021) study

the e�ects of library capital spending during the 2000s on library use and child test scores. �ey

�nd that library investment increased library quality, library usage, and the reading test scores of

nearby children.
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�e rest of the paper is organized as follows. Section 2 overviews the history of Carnegie’s library

program and reviews historical examples of inventors using public libraries. Section 3 discusses the

construction of the data. Section 4 presents the empirical strategy and discusses the main results.

Section 5 proposes and explores possible mechanisms and discusses heterogeneity across inventor

and city characteristics. Section 6 shows that our results are robust to a variety of speci�cation,

measurement, sample, and estimation choices. Section 7 concludes.

2 Historical background

In this section, we describe the history of public libraries in the United States during the 19th century

as well as the details of the Carnegie library program. We then discuss the nature of innovation at

the time of Carnegie’s grants and provide qualitative evidence showing links between innovation

and libraries during this time in the United States.

2.1 Public libraries before Carnegie

Public libraries in the United States are a relatively recent civic institution. In 1833, the small town of

Petersborough, N.H., established the �rst U.S. library open to all citizens and supported by town tax

dollars. In the early 1850s, New Hampshire, Maine, and Massachuse�s passed state laws authorizing

local taxation to �nance libraries. �ese laws helped spread public libraries in Northeastern cities.

�e �rst large city to open a municipal library was Boston in 1852. Despite a growing movement in

favor of public libraries, their di�usion during the rest of the 19th century was slow. �e �nancial

pressures of the Civil War reduced resources for publicly funded libraries. It was not until 1893 that

the growth of libraries hit a turning point thanks to the Chicago World Fair. �ere, the American

Library Association (ALA)—an interest group of librarians founded in 1876 that advocates for the

spread of municipally-funded libraries—showcased a demonstration public library with 5,000 books.

Spearheaded by ALA’s president, Melvil Dewey, the exhibit a�racted national a�ention (Sharp, 1893;

Wiegand, 2015). �e popularity of this exhibit helped fuel the local demand for public libraries.

In the early 1890s, at the time of the ALA exhibit and at the cusp of the library revolution, there

were approximately 600 public libraries nationwide, almost exclusively located in the Northeast

(Jones, 1997). Outside large cities like Boston, many of these libraries were not freestanding, but
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instead located in the basements or a�ics of pre-existing buildings. For example, in Malta, Mont.,

the library was located on the balcony of a drugstore; in Dunkirk, N.Y., in the basement of a hospital;

in Marysville, Ohio, in the horse stall of the �re department (Bobinski, 1968). Less than 30 years later

in 1919, the United States had 3,500 public libraries, most in dedicated buildings and many occupying

the largest building in town. Over half of these new libraries were constructed with funds from a

single donor: Andrew Carnegie.

2.2 �e Carnegie library program

Andrew Carnegie’s library funding program is one of the most wide-reaching acts of philanthropy in

U.S. history. From his �rst grant in 1883 (to Allegheny, N.Y.) to his last grant in 1919 (a branch library

in Philadelphia, Pa.), Carnegie fully funded the construction of 1,687 public library buildings across

the country at the cost of approximately $1 billion in 2020 dollars. Carnegie’s stated motivation for

the library grants was consistent with his larger views on philanthropy: He believed that public

libraries were a way citizens could improve themselves if they had su�cient drive.

Carnegie’s library grants started with a small number of cities, but quickly became a national

phenomenon. Carnegie himself referred to two distinct periods of his program: the “retail” and

“wholesale” phases. In the “retail” phase that started in 1883, Carnegie gave money to build eight

libraries in selected communities.1 By 1899, Carnegie shi�ed his priority to providing library access

for as many people as possible (the “wholesale” phase). He opened the library application process to

essentially all cities that did not already possess a stand-alone, self-su�cient library.2 In some cases,

cities already had small libraries that the Carnegie program supplanted. In this case, our estimated

treatment e�ects of Carnegie libraries will not solely re�ect the e�ects of new libraries; instead, it

will pick up the e�ects of new, high-quality libraries.3

1�ese locations o�en has personal ties to Carnegie. For example, Carnegie’s earliest U.S. library was built in Al-
legheny, PA, near one of his steel mills.

2In our baseline empirical analysis, we exclude “retail” libraries, since their hand-picked nature may imply that
selected cities were systematically di�erent from other cities. In the robustness checks, we show that our results are
robust to including these libraries in our sample. Carnegie also required cities to have over 1,000 people. However,
evidence shows that this requirement was not binding throughout the period considered here. In fact, we observe
several cities which got a grant although their population was below 1,000. Most cities were much larger than 1,000, but
we also observe cities smaller than 1,000 that received a library (e.g., Bayliss, California) in conjunction with support
from counties or nearby townships.

3Unfortunately, temporally consistent library data is di�cult to compile for the universe of cities in the United States.
While this information was collected by the U.S. Census, the censuses were not regular and had shi�ing inclusion
requirements across years. For that reason, we focus on identifying the net e�ect of Carnegie libraries, which involves
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�e grant application process started with a le�er of interest to Carnegie’s private secretary and

administrator of the library program, James Bertram. O�en initial le�ers to Bertram came from

everyday citizens or leaders of civic groups. Bertram would reply, noting that he was happy to

hear about their interest in libraries but that future correspondence should occur with elected city

representatives. Bertram instructed cities to �ll out a short form, which asked for information on

the city population, the names of city o�cials, whether the city already had a public library, and if

so, for additional details on its building structure, its expenses, and its circulation. �is step ensured

that cities understood what Carnegie was willing to supply—money to construct the building for

a new public library—and identify whether such a library already existed. Almost all cities that

applied were found eligible and progressed to the next stage.4

�is next stage required that cities satisfy a number of requirements in order to receive con-

struction funds. Accepted libraries received a short le�er from Bertram, like this one to Stoneham,

Mass. reported in Jones (1997):

Dear Sir:

Responding to your communication on behalf of Stoneham. If the City agrees…to main-

tain a Free Public Library at a cost of not less than Fi�een Hundred Dollars a year, and

provides a suitable site for the building, Mr. Carnegie will be glad to furnish Fi�een

�ousand dollars to erect a Free Public Library Building for Stoneham.

�e le�er highlights the award amount that Carnegie judged necessary to fully construct the library.

It also outlines four main features of Carnegie’s grants:5

1. �e granted amount was determined by Carnegie and Bertram. With few exceptions,

Carnegie and Bertram decided the exact grant amount based on reported population. �e rate

was approximately $2-3 per person in the town. �e grant amount could be controversial.

Some cities argued that they were entitled to additional funds, o�en by noting that the census

both quality and quantity dimensions.
4As noted in Bobinski (1969), Carnegie and his sta� rejected requests at this stage for state, subscription, and his-

torical society libraries. Carnegie also funded the construction of 108 academic libraries during this period. We do not
consider these libraries in this paper, as they had a distinct mission from public libraries and may have not been open
to the general public.

5For more details on the structure of the program, see the excellent histories in Bobinski (1969) and Jones (1997).
A�er 1908, Carnegie began to impose more requirements on the speci�c construction techniques and �oor plans that
libraries could use and cities were required to submit blueprints for approval. �is occurred a�er a number of towns
tried to combine libraries with other civic buildings, like gyms or city halls, that Carnegie was not interested in funding.
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population �gure was out of date and that they expected to draw a�endees from beyond their

city limits. �ese protests rarely succeeded (Bobinski, 1969).

2. Carnegie libraries needed to be free and public. Carnegie libraries were meant to be

open to the public, unlike many private libraries of the day, and were not supposed to charge

admission fees, unlike commercial, subscription libraries.

3. �e construction site needed to be provided by the city. Carnegie required that the city

either purchase a site or re-purpose an existing city property. Bertram asked cities to send

proof of site ownership before the funds were dispensed. Bobinski (1969) estimates that one

in three cities had some sort of controversy about the site location. Because libraries o�en

became town centerpieces, it is unsurprising that citizens �ercely argued in favor of their

preferred locations.

4. Citieswere required to commit funds for ongoingmaintenance of the libraries. Carne-

gie knew that providing funds for construction was not enough. He wanted to make sure that

cities could �ll the libraries with books, pay the sta�, and maintain the building. His solution,

as illustrated in the above le�er, was to require that cities pledge to spend 10 percent of the

initial construction grant on annual library upkeep. Practically, this 10 percent maintenance

requirement was at the lower end of what would be required to sta� and maintain a library in

the early 20th century. Cities o�en had to allocate additional funds beyond the 10 percent to

keep their libraries running, particularly as average city sizes grew throughout the 1920s and

1930s (Bobinski, 1969).

Despite the wri�en pledge, once a library was built, Carnegie had li�le ability to enforce the

10 percent contribution requirement. Cities knew that enforcement was limited, and there is

ample evidence of cities failing to meet the requirement. In 1917, the Carnegie Corporation—

which by this point had been founded to manage the library program and related philanthropy—

sent a survey to investigate reports that the pledge was not being met. �e results were stark

and discouraging. In Ohio, for example, 23 out of 77 cities were not meeting the pledge (Bobin-

ski, 1969). A�er this non-compliance was discovered, library grant-giving to Ohio was brie�y

suspended, but there was no direct action against the o�ending libraries themselves.
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2.3 Reactions to Carnegie’s library program

�e reactions to Carnegie’s program were mixed. Many cities welcomed Carnegie’s money. Indeed,

communities that received a library could create a cascading e�ect within a state, as residents in

nearby cities rushed to apply for their own building. But for some residents, Carnegie grants were

controversial. A large number of cities that would have quali�ed to build a library never applied.

In addition, more than 200 cities applied for and were granted funds but ultimately rejected the

grant. �e decision of these cities, re�ecting approximately 15 percent of o�ered grants, was a

notable rejection of Carnegie’s program. �roughout the rest of the paper, we refer to these cities

as rejecting cities.

�e key event that generated Carnegie’s long-term negative reputation and many eventual re-

jections was the steel worker strike at Homestead, Pennsylvania, in July 1892. A�er months of rising

tensions in the face of increasing production demands by Carnegie’s managers, the local union and

management were unable to reach an agreement on a new contract. Determined to defeat the union,

Carnegie’s factory locked out the union workers, and workers struck. Carnegie’s managers hired

a private militia to break the strike and take back the town.6 �e resulting ba�le led to the deaths

of nine strikers, ten members of the militia, and scores of wounded. �e ba�le made international

news. Carnegie’s actions were never forgo�en by those in the labor movement, many of whom later

became involved in the �ght against libraries.

An editorial published 17 years a�er the strike in 1909 in the Pi�sburg Kansan illustrates the

long-lasting impact of the strike and Carnegie’s unpopularity among labor in library debates:

A library that is built on money wrung from the hearts and homes of Homestead miners

who were shot down in cold blood…is no ��ing monument for the kind of men that built

Pi�sburg. If Mr. Carnegie wants to be charitable, let him commence with the widows

and orphans of the murdered miners. (reproduced in Jones, 1997)

In Wheeling, West Virginia, which ultimately rejected Carnegie’s o�er of funding, a union leader

declared that “[i]n view of Mr. Carnegie’s a�itude toward labor it is the duty of organized labor to

adopt stringent measures to defeat the erection of this disgraceful monument” (Electrical Worker,
6Whether Carnegie knew of the exact actions taken by his managers and how much blame Carnegie should face

for the resulting deaths has been long debated by historians and biographers. For a recent discussion of the event, see
Nasaw (2007).
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1901). In Detroit, where opposition to Carnegie was �erce, the city treasurer proclaimed “[w]e ought

to be able to take care of ourselves…[not] accept a big chunk of money as a gi� from a man who has

made his money the way Carnegie did” (Krass, 2011). Opposition was not limited to local o�cials.

Prominent national politicians and writers, including socialist and recurring presidential candidate

Eugene V. Debs and �e Jungle author Upton Sinclair, spoke out against accepting libraries. Even

Samuel Clemens (be�er known as Mark Twain) weighed in, noting that Carnegie’s quest for per-

sonal recognition might be behind his generosity: “He bought fame and paid cash for it” (Bobinski,

1969). While labor sentiment could drive Carnegie rejection, it was not always dispositive and likely

idiosyncratic. For example, Homestead, PA itself built a Carnegie library, and the president of the

American Federation of Labor, Samuel Gompers, famously stated: “A�er all is said and done, he

might put his money to a much worse act. Yes, accept his library, organize the workers, secure bet-

ter conditions and particularly, reduction in hours of labor, and then workers will have some chance

and leisure in which to read books.”

Opposition from the political le� was only one of the obstacles standing between cities and

their libraries. �e 10 percent yearly pledge was also unpopular, despite being at the lower end

of what was needed to support a library as well as being largely unenforceable. In order to avoid

the 10 percent pledge, some cities rejected Carnegie and either did not build a library or courted

local philanthropists instead.7 In addition, some cities could not secure or decide on a library site,

eventually forfeiting their application.

2.4 Innovation during the Second Industrial Revolution

Having described the Carnegie library program itself, we now turn to evidence that suggests a po-

tential relationship between libraries and innovation. Both the characteristics of innovation during

the early 20th century and the contemporaneous records of inventors themselves suggest that lib-

raries could have played an important role in the idea-generating process at this time in U.S history.

Patent data show that inventions claimed between 1870 and 1930 were o�en simple, concentrated

in practical technology classes, and usually claimed by a single inventor. Figure 1 shows the share

of single-authored patents �led from 1870 onward. Until 1930, about 90 percent of all patents issued

by the U.S. Patent and Trademark O�ce (USPTO) fell in this group. Since then, this share has
7We exclude cities that built libraries from local philanthropists from our baseline sample.
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steadily declined, reaching about 35 percent in 2010. Figure 2 plots the distribution of patents across

technology classes by decade. �is chart shows that during the Carnegie library expansion period,

patenting activity was mainly concentrated in relatively practical trades, such as human necessities

(which includes farming), performing operations and transporting (e.g., vehicles, metal casting),

and mechanical engineering. About 70 percent of the patents �led between 1870 and 1930 belonged

to these three technology classes. Electricity, physics (which includes computing), and chemistry

patenting only expanded in more recent decades.

In this context, it is plausible that public libraries were associated with increases in innovative

activities. Capital-intensive, technologically demanding, team-based innovation that we associate

with modern patenting was less prevalent. Instead, much innovation was done individually or in

small teams and focused on trades that overlap with the types of practical materials that libraries

held.

2.5 Documented relationships between public libraries and innovation

Biographies of inventors also provide direct evidence that libraries a�ected creative and innovative

output. �ese anecdotes do not establish the causal e�ect of libraries, but they do provide context

for the results that we identify and suggest potential mechanisms.

In the 1930s, Chester F. Carlson—the inventor of the modern copy machine and founder of

Xerox—cited research in the public library as a key input in his work:

At �rst, I did as much thinking as I could about the problem. I ju�ed down my thoughts

in my inventor’s notebook. But mainly, in the beginning, I started reading. I know

I spent many evenings and weekends in the Science and Technology Division of the

New York Public Library. I got out everything I could �nd on printing and duplicating.

(Researching NYC, 2015)

Edward Land, who invented the Polaroid method of instant photography, also made breakthroughs

in his research at the New York Public Library in the 1920s. �e key sources that led to both Carlson’s

and Land’s breakthroughs in the library were over 30 years old when they found them (Wenyon,

2009). Because libraries recorded and organized both current and past technical materials, they

provided a unique opportunity to discover and recombine existing ideas.
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�e iconic design of the Coca-Cola bo�le was also developed with help from a public library.

In 1915, Coca-Cola sent out a call for bo�le designs to di�erentiate their product from competitors

and counterfeiters. Designers at the Root Glass Company in Terre Haute, Indiana visited their local

public library for research. �ey were inspired by an illustration of a distinctive cocoa bean and

patented their design. �eir bo�le was adopted by Coca-Cola in 1916 (�e Coca-Cola Company,

2015).

Even �omas Edison made regular use of public libraries to access knowledge on electricity and

telegraphs that he subsequently used in his inventions. As wri�en in a recent biography:

In the library stacks, Tom tracked down Dionysius Lardner’s classic work on the Elec-

tric Telegraph as well as his Handbook of Electricity, Magnetism and Acoustics. He read

Richard Culley’s Handbook of Practical Telegraphy, Charles Walker’s Electric Telegraph

Manipulation, and Robert Sabine’s History and Practice of the Electric Telegraph. (Bald-

win, 2001)

Finally, a 2012 obituary for Stanford Ovshinsky, a self-taught inventor whose work on ba�eries

transformed the industry, highlighted the long-term importance of his hometown Carnegie library

in his development:

A mediocre student, he spent hours in the Akron public library, where his real education

took place. ‘His teachers didn’t understand him, but his librarian did,’ his son said Friday.

(�e Los Angeles Times, 2012)

�ese examples suggest that public libraries played a role in the development of iconic innovations

in the early 20th century.

3 Data

In this section, we describe the data that we use in our empirical analysis. We �rst describe our

historical data on libraries. We then explain the construction of our patenting data, which is the

source for most of our outcome variables. Last, we discuss other city-level covariates and provide

summary statistics. Further details on data construction are provided in Appendix B.
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3.1 Accepted and non-built libraries

We construct a dataset of all Carnegie libraries using historical records collected by Bobinski (1969)

and Jones (1997). Both authors compiled their lists from the original Carnegie library program

correspondence and surveys of libraries.8 We assign each library to the city where it was built

and use grant years as “treatment” years since they exist for cities that both accepted and rejected

grants. In some larger cities, Carnegie funded multiple libraries. �ese awards typically paid for the

construction of the main library building, as well as branch libraries. Multi-library grants occurred

in approximately 5 percent of recipient towns and accounted for roughly 200 of the 1,687 Carnegie

grants. In multi-library cities that built libraries at di�erent points in time, we assign the city-level

grant year to the �rst time that a grant was o�ered.9

We also collect information on when each library opened. We compile opening dates from library

websites, phone calls to libraries, and architectural historical society records.10 With these data, we

calculate the average time to library opening a�er grant dates and con�rm that the timing of our

results is consistent with construction pa�erns. Figure A1 shows the distribution of construction

times. On average, libraries took three years to open a�er grants were made. But the majority were

built and opened to the public within 1-2 calendar years a�er the grant being disbursed.

To identify cities that rejected Carnegie library grants once they were approved, we rely on

Bobinski (1969). Bobinski identi�ed 209 Carnegie libraries “that never materialized.” His primary

source is the original Carnegie library correspondence between Bertram and rejecting cities, which

we have also requested and reviewed. In addition to the locations of the rejecting cities, Bobinski

identi�es the grant amount and the date of the o�er.

From the universe of library grants, we construct a consistent sample of cities that is used

throughout the main analysis. First, we exclude a handful of library grants that Carnegie made

before 1899 during the “retail period.” Carnegie hand-selected the location of these grants before

he opened his program to national applications and had personal connections to these early loca-

tions, so including them may introduce bias into our analysis. Second, we exclude Carnegie grants

in larger cities and counties. Carnegie grants in larger cities were distinct and came with additional
8We also completed a careful review of the original Carnegie correspondence and news archives to search for any

records that these authors might have missed—we did not identify any additional libraries.
9As discussed below, we omit most of these large cities from our baseline analysis. Our results are robust to altern-

ative date choices, including assigning the median granted year.
10�is data was compiled and veri�ed in conjunction with Ezra Karger, who uses the data in Karger (2021).
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requirements and bene�ts relative to the vast majority of other cities. Moreover, many of these cities

and counties (e.g., Cook County, Illinois) already had well-developed library systems that Carnegie

improved.11 �ird, we exclude control cities that rejected Carnegie because they instead built a lib-

rary with funds from a local philanthropist. Finally, we exclude cities that cannot be matched to

the 1900 census, which we use as our main data source of pre-program city characteristics. �ese

cities were o�en unincorporated in 1900 and their city names were not recorded by census enumer-

ators; this was particularly common in the Western United States. We show in Section 6 that these

restrictions do not a�ect our main conclusions.12

3.2 Patent data

We measure innovative activities at the local level through patent data. Patents are a popular but

imperfect measure of innovation: not all inventions are patented, and the propensity to patent is

a function of the underlying legal environment (e.g. Moser, 2005). In our se�ing, patents are the

only consistently available measure of local innovation at the local level, which is key given the

local nature of our treatment. Further, patent data allows us to investigate the underlying content

of inventions.

Our patent data come from the Comprehensive Universe of U.S. Patents (CUSP; Berkes, 2018).

�e CUSP covers more than 90 percent of the patents issued by the U.S. Patent and Trademark O�ce

(USPTO) over the period 1836-2015.13 From this dataset, we collect information on the distribution

of technology classes associated to each patent according to the Cooperative Patent Classi�cation

(CPC), inventors’ names, �ling year, the raw text of patents, and inventors’ cities of residence.

With these data, we create a longitudinal dataset of patents by �ling year in each city that ac-

cepted or rejected a Carnegie library. When there are multiple authors, we proportionally assign

patents to cities by assigning to each city a fraction of the patent equal to the inverse of the num-

ber of authors.14 Each patent is associated to a distribution of technology classes according to the
11Our baseline sample is constructed by excluding all cities that had more than 30,000 people and all counties with

more than 750,000 people. We discuss how our results change when using alternative cuto�s and samples in subsequent
sections.

12A full description of how each sample restriction a�ects our sample size and estimated patenting impacts is shown
in Table 10

13Berkes (2018) provides a full description of these data and how it was compiled. Andrews (2021a) compares the
CUSP with other existing patent data sources, and suggests that the CUSP is currently the “gold standard” for researchers
interested in patent and inventor-level information.

14As shown in Figure 1, approximately 90 percent of patents were single-authored during the time frame of our
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Cooperative Patent Classi�cation (CPC).15

We assign two measures of quality to each patent. First, we calculate the number of forward

citations. Since patents �led before 1947 lack a reference section, patents in our sample were not

required to cite prior art. However, patents from the 1870-1930 period are o�en cited by later patents

once the citations section was introduced. As is common in the literature, we use citations as a

positive indicator of invention quality. We use both the count of citations and the probability of

observing a patent with at least one citation in a given city-year as measures of quality. Second, we

use the measure of patent quality recently developed by Kelly et al. (2021). Kelly et al. (2021) use

the text of patents to measure their impact by comparing the text of a given patent to the text of

those that came before and a�er it. According to this measure, a high quality patent is one that is

dissimilar to prior patents but similar to future ones. �at is, it is a patent that is both novel for its

time and shapes the direction of future innovation. We identify patents in the top ten percent of

Kelly et al. (2021)’s baseline quality measure and test whether libraries increase the probability of

observing one of these patents.16

For every patent, we also predict the likelihood that each author listed is a female or an immig-

rant. From the patent data, we observe the full name of inventors. To assign gender and immigration

probabilities, we use the 1900-1940 full count census �les. For each unique �rst name in the census,

we calculate the proportion of respondents who are female, and we assign this proportion to each

corresponding inventor name.17 We perform a similar exercise for immigrants, using the last name

and country of origin of people in the census.18

To test for potential mechanisms, we identify the subset of patents that cite books, prior patents,

or magazines. We do so by specifying an initial list of keywords that are likely to be associated to

those materials (e.g., encyclopedia, handbook, dictionary, etc.). We search the corpus of patents and

identify those that mention the keywords. We then manually review our matches to identify other

analysis. Many of the remaining 10 percent are co-located authors. Assigning full credit for a patent to every authors’
city (instead of dividing by 1/n ) does not change our results.

15Similarly to what we do for multi-authored patents, each patent which is assigned to multiple classes is proportion-
ally distributed across classes.

16Kelly et al. (2021) discuss and develop a number of closely related patent quality measures. Our results using the
top 10 percentile method are similar if we instead use their alternative measures.

17For example, using this method, an author named “Sarah” is assigned a 99.6 percent chance of being female, “John”
a 0.01 percent chance, and “Francis” a 51.5 percent chance.

18We a�empted a similar exercise with the �rst and last name of Black inventors. �is approach led to many potential
false positives, because there are fewer distinctively Black names in the historical censuses at this time. Given the low
rate of patenting among Blacks during this time period, these false positives precluded a similar analysis for Blacks.
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keywords and �ne-tune the parsing rules to minimize false positives. �is process is repeated until

we are unable to identify new keywords. We report the �nal list of keywords and associated parsing

rules in Appendix B.

Last, we are interested in identifying �rst-time inventors. We do so by clustering inventors with

the same name, using their reported location to disambiguate them. More precisely, we assign two

inventors on separate patents the same ID if their �rst names start with the same le�er, more than

90 percent of their full names match,19 their residence is within a 50km radius, and they patented

within 10 years of one another.20 While this method is not perfect (e.g., it will create two separate

clusters if an inventor moves across the country), it strikes a good balance between precision and

recall. A�er assigning unique IDs to each inventor, we identify each inventor’s �rst patent.

3.3 City and county covariates

We construct city and county-level covariates from historical census data and related sources. We

use each city’s time-varying population collected by Erik Steiner and Jason Heppler.21 For other

standard covariates, including sex shares, race shares, average age, share of the population enrolled

in school, and the occupation and industry of workers, we use the 1900 census micro-data aggreg-

ated at the city level. We calculate the fraction of each city’s laborers in the mining industry in

1900 using census occupation responses. We also examine other details of the occupation structure

in each city. In particular, we calculate the proportion of workers in “innovation-focused” occupa-

tions as de�ned by �rst-digit 1950 occupation codes: professionals (including engineers), managers,

skilled cra�smen, and skilled mechanical operators. To calculate a proxy for city-level earnings and

aggregate the entire industry and occupation distribution, we apply Saavedra and Twinam (2020)’s

predicted earnings algorithm based on state, sex, age, race, occupation, and industry.22

For robustness, we use two county-level proxies for union activity measured before 1900. First,
19We use a fuzzy matching strategy because the names are extracted from digitized documents and sometimes contain

typos due to OCR errors. �e actual procedure takes into consideration the length of both strings and corresponds to
the percentage of characters that match when the two names are of same length. We provide more details in Appendix
B.

20We also allow for a larger radius (400km) if the two patents were �led within 5 years of one another.
21See h�ps://github.com/cestastanford/historical-us-city-populations/ for a full description of the data. A number of

cities do not have consistent population data in this source. We augment this series from records in the 1900 census and
scraped data from Wikipedia to create a population estimate at the time of library entry for every city in the sample. In
the regressions, we interpolate population between decennial censuses.

22Censuses before 1940 did not ask for income information.
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we use the count of Knights of Labor assemblies formed before 1900. �e Knights of Labor were

the �rst sizable, national U.S. union. �ey were founded in 1869 and at their 1886 peak represen-

ted 20 percent of industrial laborers (Bi�arello, 2019). �e county-level Knights of Labor data were

originally digitized by Garlock (1982) from contemporaneous union press and organizational pub-

lications. We use an updated version of Garlock’s data compiled by Bi�arello (2019).23 Second, we

use information on the number of strikers involved in labor disputes from 1881 to 1894. �ese data

were originally compiled in the �ird and Tenth Reports of the Commissioner of Labor in 1888 and

1896.24 We use a geocoded version of these data recently compiled by Bi�arello (2019).

Finally, we digitize data on city-level historical college locations from the US Bureau of Edu-

cation’s 1902 Report of the Commissioner of Education. �is document records information on all

colleges as they existed in the academic year 1900-1901. We collect the locations of all colleges and

universities that grant A.B., B.S., or B.L. degrees, including women’s colleges and technical univer-

sities.25

3.4 Summary statistics

Figure 3 shows the cumulative distribution of grant dates for cities that built (panel A) and rejected

(panel B) Carnegie libraries. Both panels display similar shapes. Very few libraries were sponsored

until the late 1890s. Starting in 1900, the number of granted libraries sharply increased, before

se�ling into a steady trend a�er 1905 and dramatically slowing in the late 1910s.

Figure 4 shows the geographic distribution of Carnegie libraries across time and locations. Each

panel plots the locations of Carnegie libraries that had been granted by the indicated date. �e

lowest �gure (panel E) maps the location of all Carnegie libraries. As this map illustrates, the reach

of Carnegie’s program was national. Almost every state received at least one Carnegie library.

Despite this outreach, some geographical pa�erns are clear. Granted libraries were popular in the

Midwest and Northern states.26 Indiana had the most granted Carnegie libraries, with a total of 164
23As in Bi�arello (2019), we use the count of Knights of Labor assemblies and not membership because the mem-

bership data is spo�y in later years. Moreover, branches had an incentive to exaggerate membership to the national
organization to secure additional funding.

24�ese reports are widely used in studies of the early labor movement, including Card and Olson (1995), Rosenbloom
(1998), and Currie and Ferrie (2000).

25Technical universities in the 1902 report include institutions like MIT, as well as public universities like Texas A&M
and Purdue. �e speci�c colleges and universities that we use are found in Tables 29, 32, and 36 of the 1902 report.

26While Southern states had fewer people, this result also holds on a per capita basis.
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libraries built in 157 cities.

Figure 5 shows a similar map with the addition of rejecting cities as red, larger dots. As with

cities that received a library, rejecting cities are located all across the United States. Cities in South-

ern states were more likely to reject libraries conditional on receiving an o�er. For that reason,

throughout the rest of the paper, we con�ne most of our discussion to within-state comparisons of

accepting and rejecting cities.27

Figure 6 compares covariates across cities that received and those that rejected Carnegie librar-

ies measured before library receipt. We plot the coe�cient from an indicator variable for building

(rather than rejecting) a Carnegie library from a regression on standardized covariates conditional

on state �xed e�ects. �e covariates considered here include population, share of women, average

age, share of Blacks, average predicted earnings based on occupation and industry, share of the pop-

ulation currently enrolled in school, share of the workers in the mining industry and in innovation-

focused occupations, and the number of Knights of Labor Assemblies and strikers observed within

�ve miles before 1900.28 Our identi�cation strategy does not require balance on pre-treatment char-

acteristics, but these results suggest that, conditional on state, places that accepted and rejected

Carnegie libraries were broadly similar on many observable characteristics before Carnegie’s pro-

gram. In our empirical analysis, we show estimates from regressions when we do and do not �exibly

control for these covariates.

By contrast, Figure 7 shows a starkly di�erent result when we make within-state comparisons

between cities that built Carnegie libraries and those that did not apply for a grant. We use the same

variables and comparison strategy described in the previous paragraph. While cities that apply

look similar to each other, Figure 7 illustrates that cities that did not apply are systematically dif-

ferent. In particular, non-applicants have fewer workers in plausibly high-innovation occupations—

particularly cra�smen—and have lower imputed earnings. We do not use these non-applicant cities

in our baseline analysis, although we do use them to estimate the possible spillover e�ects of librar-

ies.
27We also show that our results are robust to excluding the South from our analysis.
28Each covariate is standardized to have mean zero and standard deviation 1 so that it is possible to plot them on the

same scale. �e standardization does not a�ect the interpretation of the results.
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4 Empirical analysis

In this section, we describe our identi�cation strategy and present our main results. First, we show

that the raw data suggests an impact of libraries on patenting. Next, we describe our regression-

based strategy, situate our approach relative to recent methodological advances in di�erence-in-

di�erences designs, and present the main patenting results of the paper.

4.1 Patenting trends

In Figure 8, we plot city-level patenting for our treatment and control samples twenty years before

and thirty years a�er library grants. We show the log number of patents conditional on grant year

�xed e�ects over time. Cities that built and rejected Carnegie libraries follow parallel patenting

trends before libraries were granted. �e trends start diverging shortly a�er grants, consistent with

construction times. �e dashed red line indicates the average number of years in our sample from

the moment the grant was received to the opening of the library. Patenting di�erences between

cities that accepted and rejected libraries peak between 5 and 15 years a�er library receipt.29 �is

di�erence declines over time, and by 30 years a�er library acceptance cities that accepted and re-

jected libraries revert to similar levels of patenting.30

4.2 Di�erence-in-di�erences estimates

To formalize the pa�erns that we observe in the raw data, we estimate di�erence-in-di�erences

regression models of the form:

PatentMeasurei,s,t = β1Posti,t + β2Libraryi × Posti,t + δs,t + γi + εi,s,t (1)

where PatentMeasurei,s,t is a measure of patents in city i, state s, year t. Libraryi indicates cities

that constructed a Carnegie library. Posti,t is a dummy variable that takes value 1 in the years a�er

city i received a library grant; it is a function of both time (t) and the grant year of city i. Posti,t
29If we plot this �gure in levels instead of logs, the treatment e�ect grows more gradually over time, as demonstrated

in Figure A6. �e pa�ern of treatment e�ect growth is consistent with the timing of results that Furman et al. (2021)
�nd for the e�ects of patent deposit libraries.

30�is is likely due to an increase in the complexity of inventions over time that reduced the importance of public
libraries in promoting innovative activities.
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is well-de�ned for all units in both our treatment and control group since all cities were o�ered

library grants.31 �e baseline empirical model includes state-by-year (δs,t) and city (γi) �xed e�ects.

For our main analysis, we use ln(patents + 1) as our patent measure to make magnitudes directly

comparable to other recent papers; we later show that our results are robust to other dependent

variable transformations.32 �e coe�cient of interest, β2, identi�es the average increase in patenting

a�er receiving a grant in cities that built a library relative to cities that were o�ered a grant but did

not build one. We estimate our model using observations 20 years before and a�er library grants

for each city.33 Unless otherwise indicated, we cluster standard errors at the city level.

Our speci�cation of Equation 1 relates to concerns in the applied econometrics literature about

the interpretation of staggered di�erence-in-di�erences estimators. When units are treated at di�er-

ent times, post-treatment periods for never treated units are not usually de�ned. Instead, researchers

o�en estimate models with unit and time �xed e�ects and a time-varying treatment indicator that is

always zero for never-treated units, colloquially called the two-way �xed e�ect (TWFE) approach.34

Our speci�cation departs from these models as we observe grant dates for all cities. Equation 1

includes well-de�ned post-period indicators (Posti,t) for both treated and control units. �is spe-

ci�cation is equivalent to making a simple comparison: we calculate patenting changes before and

a�er grants in cities that built their libraries relative to cities that did not, conditional on included

covariates and �xed e�ects. Moreover, we are able to specify models that only exploit variation in

treatment status among groups of cities that received library grants in the same year by including

grant year and grant-by-calendar year �xed e�ects.

To interpret β2 as the causal e�ect of libraries, the standard di�erence-in-di�erence assumption
31We use grant dates and not library construction dates because grant dates are well-de�ned for all units in our

sample, while library construction dates are not. Moreover, the gap between when a library is granted and opened may
be a function of other city characteristics that are correlated with patenting.

32We establish this systematically in Section 6, where we show results from estimation using the inverse hyper-
bolic sine of patents, patent counts, Poisson-modelled patent counts, zero-in�ated Poisson-modelled patent counts, and
aggregated versions of these measures where we collapse each city into a before and a�er library grant observation.

33�is implies that each geographical unit in our baseline sample has the same number of observations before and
a�er library entry. In subsequent analysis, we estimate dynamic models that allow the e�ects of Carnegie libraries to
di�er over time. In Section 6, we show that our results are robust to alternative choices for the length of the pre-period.

34A recent and rapidly expanding literature examines the properties of the TWFE estimator. For example, Goodman-
Bacon (2021) and De Chaisemartin and d’Haultfoeuille (2020) show that the TWFE method may estimate a biased para-
meter. In particular, the TWFE approach in part uses units treated in earlier time periods as controls for later treated
units. If treatment e�ects di�er over time, these comparisons will be biased, a�ecting and potentially even reversing the
sign of the aggregated TWFE parameter (Goodman-Bacon, 2021). �ese issues are not limited to aggregated models—
they also a�ect event study TWFE approaches that allow estimated treatment e�ects to di�er relative to the treatment
period (Callaway and Sant’Anna, 2020).
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must hold: conditional on included covariates, outcomes in cities that did not build their granted

librarywould have followed the same path as cities that did build their libraries. While fundamentally

untestable, we demonstrate the plausibility of this assumption by showing that pre-grant trends in

patenting are similar across our treatment and control groups and that our results are stable with

and without a wide range of potential controls and �xed e�ects.

Our main results, obtained by estimating Equation 1, are presented in Table 1. We show eight

di�erent speci�cations, each corresponding to di�erent combinations of �xed e�ects and included

covariates. Estimates for the key coe�cient (Built library × post) suggest that the number of patents

increased by approximately 7-11 percent in the years a�er the receipt of library grants in cities that

built their granted libraries relative to cities that did not build libraries. �e second panel of Table 1

presents results for the same speci�cations where we exclude observations a�er 1928, to avoid using

observations that overlap with the Great Depression and subsequent recovery. E�ects are larger

(8-14 percent) when we exclude the Great Depression, which led to a sharp decrease in national

patenting.

We also estimate dynamic versions of Equation 1 that allow the impact of libraries on patents to

vary over time. In particular, we estimate versions of

PatentMeasurei,s,t =
30∑

r=−20

[β1×RelY eari,t,r+β2,rLibraryi×RelY eari,t,r]+ δs,t+γi+ εi,s,t (2)

where the terms in Equation 2 are de�ned similarly as in Equation 1. However, instead of a single

post period indicator, we interact treatment status with a set of dummy variables for years relative

to Carnegie grants (RelY eari,t,r). We bin years in �ve-year increments to maximize power while

allowing for a �exible estimation of treatment e�ects over time. �e vector of coe�cients β2,r traces

out how the relative patenting di�erences between cities that did and did not build granted Carnegie

libraries change over time. Because we estimate these patenting di�erences both before and a�er

the date of treatment, this speci�cation can also be used to assess the plausibility of our empirical

strategy. If the estimated impact of libraries on patenting were trending upward even before libraries

were built, this would imply that accepting cities were positively selected on patenting trends and

that post-library patenting di�erences are unlikely to re�ect the causal impact of libraries.

Figure 9 plots the marginal e�ects of receiving rather than rejecting a library evaluated at each
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bin relative to the grant year. �e excluded category is 1 to 5 years before library grant dates.

�e reported coe�cients re�ect �ve-year bins containing the labelled relative year and the four

following years.35 Standard errors are clustered at the city level and we plot 90 percent con�dence

intervals. �e results in Figure 9 are consistent with the dynamics outlined by the raw data plo�ed

in Figure 8. Flat pre-trends indicate that cities that received and rejected libraries follow similar

patenting pa�erns before library grants. �ickly a�er library grant receipt, and consistent with

data on construction time, patenting behavior diverges. Di�erences peak between 5 and 15 years

a�er library entry before they start to converge. Figure 10 shows that these results are broadly

similar if instead we estimate the model with either (a) city and grant by calendar year �xed e�ects,

or (b) city, grant by calendar year, and state by calendar year �xed e�ects. In each case, we see

generally �at pre-trends and a sharp increase in patenting a�er the libraries are built.

Taken together, these results suggest that Carnegie libraries increased innovation, measured

through patenting activity, but that these increases were not permanent. �is is consistent with the

nature of innovation described in previous sections. While a 1910 inventor usually worked alone

on more practical inventions, by the 1930s and 1940s patenting had become more technical and

professionalized. �is is illustrated in Figure 2, which shows a decreasing share of patents in classes

like Human Necessities and Constructions over time, with technology classes like Chemistry and

Physics increasing in their place. Patenting in more sophisticated technology classes likely required

access to resources and lab space beyond the scope of public libraries.

4.3 Patent quality

Not all patents have the same innovative content, and even among the most innovative patents, real-

life impacts and value can di�er signi�cantly. If libraries only increased lower quality patenting, the

impacts discussed in the previous subsection would be overstated. To explore this possibility, we

estimate the e�ect of library on multiple measures of patent quality. We estimate analogues of

Equation 1 with a measure of patent quality in city i, state s, and year t as outcome variables:

QualityMeasurei,t = β1Posti,t + β2Libraryi × Posti,t + δs,t + γi + εi,s,t (3)

Table 2 includes the parameter estimates from this regression for three measures of quality: (1)
35For example, the bin labeled 5 contains the 5th-9th years a�er library grant dates.
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�e probability that a city-year observation had a patent that was cited in the future, (2) the count of

future citations, (3) the probability that a city-year produced a patent in the top ten percentile of the

Kelly et al. (2021) quality measure described in Section 3. Citations measure whether a patent had

lasting relevance to future inventions, while the Kelly et al. (2021) text-based approach measures

whether a patent is both novel for its time and inspires future innovation.

Table 2 shows that libraries increased both the probability of observing a patent that later garnered

citations and the number of citations that these patents received. We observe a 4-7 percentage point

increase in the probability of observing a cited patent (relative to a mean probability of 0.304), and

the number of citations increases by 1–2 patents (relative to a mean of 2.83). However, we �nd no ef-

fect on the probability of producing a top 10 percentile patent using the Kelly et al. (2021) measure;

estimated coe�cients are centered around zero and precisely estimated, ruling out large positive

or negative changes. �ese �ndings suggest that the results described in the preceding subsection

are not driven by changes in patent quality. Libraries appear to have increased the patenting rate

without a decrease in quality. If anything, they slightly increased patent quality—as measured by

citations.

4.4 Spillovers to nearby cities

In the analysis so far, we have compared patenting across cities that built and rejected Carnegie

libraries. Our estimates will di�er from the aggregate e�ect of libraries if there are spillovers to

nearby towns.36 �ese spillovers could make us overstate or understate the true causal e�ect of

libraries. For example, if libraries a�racted users from outside the city, they could have had a direct

impact on innovation in nearby areas, and our estimates would understate the actual impact of

libraries.37 On the contrary, if would-be innovators move to or �le patents in cities with libraries

that they would have otherwise �led in their hometown our estimates would be overstated.

To test for spillover e�ects, we construct a set of ‘doughnut’ treatment and control groups in-

corporating cities at increasing distances from accepted and rejected Carnegie libraries. We de�ne

cities within 15, 30, and 45 miles of Carnegie libraries as separate treatment groups, excluding the
36Bu�s (2021) provides a useful methodological discussion of the potential issues in di�erence-in-di�erences models

when spillovers are present.
37Indeed, historical records suggest that cities took into account the size of neighboring populations when applying

for libraries and, when negotiating grant amounts, a number of cities argued that they needed more money because
their library would draw users from beyond their city borders (Bobinski, 1969).

24



Carnegie library city itself from all samples. We similarly de�ne cities within 15, 30, and 45 miles

of a rejecting library (excluding the rejecting city itself) and not within those distances of a Carne-

gie library city as corresponding control groups. We re-estimate Equation 1 using the new spatial

treatment and control samples separately for each distance threshold. We assign grant dates based

on the closest accepted or rejected library and cluster standard errors at the city-of-grant level.

Figure 11 shows the result of this exercise when we estimate the model with city and state-year

�xed e�ects. �e le�most estimate is the baseline di�erence-in-di�erences estimate from Equation

1. �is estimate re�ects a comparison of Carnegie and rejecting cities before and a�er grant dates

and is identical to the corresponding estimate reported in Table 1. �e remaining estimates are for

identically speci�ed models with increasingly dispersed treatment and control groups, as de�ned

above. �e results show that there is evidence of spillover e�ects within 15 miles. �ese e�ects

quickly decrease to zero as distance increases. �e results in Figure 11 use nested distance treat-

ment de�nitions; alternatively, we can de�ne non-nested treatment bins—for example, instead of

estimating a coe�cient for 0-30 miles we estimate separate coe�cients for 0-15 and 15-30 miles.

Results using non-nested bins are shown in Figure A9. �e �gure shows that the declining treat-

ment e�ect pa�erns seen in Figure 11 are the result of positive spillover e�ects in the 0-to-15 mile

distance bin and null e�ects when considering towns located father apart. �is �nding is consistent

with prior work on patent spillovers, which �nds that they are geographically concentrated (Ja�e

et al., 1993; Murata et al., 2014). �us, our baseline �ndings do not appear to be overstated due to

“brain-drain” from nearby areas. Instead, it appears that libraries have modest but positive spillover

e�ects on nearby communities, consistent with the recognition from contemporary library lead-

ers that their new buildings would draw users from nearby areas. Moreover, these results suggest

that the e�ects that we are observe are not due to di�erences in the broad regions where Carnegie

libraries were built: e�ects are null outside 15 miles.

5 Potential mechanisms and heterogeneity

In this section, we consider two possible mechanisms that could explain the patenting increases that

we observe: (1) Libraries may have increased the stock of available knowledge in cities via books,

magazines, and other materials and (2) Libraries may have increased collaborative opportunities

between inventors. We also investigate whether certain demographic groups or cities were more
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likely to be a�ected by the libraries.

5.1 Mechanisms

Access to library information might not a�ect all types of patenting behavior equally across techno-

logical classes. In fact, the ALA’s 1904 book guide for new libraries included many practical “how-to”

books for trades and agriculture. Intuitively, it seems plausible that public libraries would have a

smaller impact on the most technical inventions that require a large amount of human (and possibly

physical) capital. Even in the early 1900s, the most technical scienti�c material was likely to be

only available in research libraries and at universities. Moreover, the most technical �elds also o�en

required access to expensive machinery outside the reach of many citizens. To study the di�erential

e�ect of access to libraries on patenting behavior, we separately estimate Equation 1 for each of the

eight main subgroups in the Cooperative Patent Classi�cation (CPC), which identify the primary

industrial applications of each patent.

Consistent with library holdings, the estimates reported in Table 3 suggest that libraries had the

largest e�ects on patenting in classes that correspond to the practical trades, such as construction,

transport, and mechanical engineering. �ese heterogeneous e�ects are in line with historical re-

cords of the books that libraries commonly carried. Patenting in topics that overlap with library

collections increased proportionately more in cities that accepted Carnegie libraries. By contrast,

we estimate no e�ects in Chemistry and Physics: coe�cients are small and statistically indistin-

guishable from zero.

We also test whether patent citations to prior materials increased a�er Carnegie library con-

struction. If patrons e�ectively used materials in libraries for their inventions, we might expect the

number of these citations to increase. We select patents that cite prior materials by identifying an

initial set of words that are associated with citation in a training dataset and searching the corpus

of remaining patents for similar phrases.38

We estimate analogous models of our baseline di�erence-in-di�erences regression from Equa-

tion 1. For this analysis, the outcome variable is an indicator for whether a patent in a particular

city-year cited a book, previous patent, or magazine. Our results, in Table 4, indicate that patents

that cite past materials increased more in cities that built rather than did not build Carnegie librar-
38More details on this procedure are given in Appendix B.
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ies. In particular, building a library is associated with approximately a 0.5 to 0.7 percentage point

increase in the probability of observing a book-citing patent, though the e�ects are imprecisely es-

timated in some samples. �e largest and most precisely estimated e�ects arise when we focus on

the pre-1925 sample.39 �is e�ect is large relative to the baseline probability of observing prior-

work-citing patents (1.2 percent). Table 4 also shows that the count of patents that cite prior work

increases a�er libraries are built.

Knowledge is not only available in books and other physical media. It can also be accessed

through collaboration with other people. Such exchanges may increase innovative output—for ex-

ample, Andrews (2020) �nds that a reduction in collaboration a�er prohibition reduced aggregate

patenting. For this reason, we examine whether libraries a�ected collaboration. Community-centric

programming was common at libraries in the early 20th century. Carnegie’s suggested library blue-

prints included meeting rooms for community activities, and contemporaneous accounts of the

Carnegie program note the variety and number of groups that met at libraries (Learned, 1924).

To estimate the e�ect of libraries on collaboration, we consider the number of multi-authored

patents per city-year. If collaboration became more common a�er library entry, we would expect the

number of multi-authored patents to increase more in cities that received a Carnegie library relative

to those that did not build a library. We estimate analogues of our baseline di�erence-in-di�erences

regression with an indicator for observing a multi-authored patent as the outcome variable. As with

the book citation mechanism results discussed above, we estimate these e�ects on multiple samples,

focusing our a�ention on short-run library e�ects.

Table 5 shows results from this analysis. �ese estimate indicate that the probability of observing

multi-authored patents generally increases in cities that built Carnegie libraries, though the results

are o�en imprecisely estimated. For example, in the third row we observe an imprecisely estimated

increase in the probability of observing a multi-authored patent of 2.6 percentage points in the pre-

1925 sample, relative to a baseline probability of observing a multi-authored patent of 18 percent.

Table 5 also shows that the count of multi-author patents increases a�er libraries are built.
39In the table we present results for the full, pre-1929, and pre-1925 sample. Because the patenting results are concen-

trated in earlier years, restricting our sample allows us to be�er identify the e�ect of libraries on rare outcomes, such
as patents that cite prior materials.
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5.2 Heterogeneity

Since libraries were open to all, they might have been particularly useful for those who did not have

as much access to other sources of information and education at this time in history. �is includes

women and immigrants, both of whom were underrepresented in patenting. Indeed, librarians were

one of the �rst professionalized career paths open to women, along with nursing and teaching.

Moreover, libraries might have been particularly important for new inventors, since those with

more experience might already have had access to alternative sources of knowledge. By contrast,

the qualitative evidence that we have reviewed suggests that established inventors also heavily used

libraries. In this subsection, we analyze these and additional dimensions of heterogeneity.

First, we test whether libraries a�ected the intensive or extensive margin of patenting. In Table

6, we show similar speci�cations as our main table, with an indicator for whether a city-year had a

patent as the outcome variable. We see positive impacts of libraries on the probability of observing a

patent, with generally larger e�ects when we focus on the pre-1929 sample. However, these e�ects

are small, less precisely estimated than our main results, and di�er across speci�cations, with point

estimates ranging from 0.4 to 3 percentage points. While libraries may have a�ected the probability

that a patent is observed in a particular city, our results seem to be mainly driven by increases in

cities that already had some patenting activity.

In Table 7, we perform a similar exercise, except that we look at the number of �rst-time inventors

who �led a patent in a given year and the share of �rst-time inventors as a fraction of total patents

�led in a given city-year. �e results in Table 7 suggest that while the total number of �rst-time

inventors per city-year increased by 0.2–0.4 people a�er libraries were built (from a mean of 1.35),

their overall share did not change much, as established inventors were also increasing their pro-

ductivity. �ese results provide li�le evidence that libraries di�erentially a�ected either established

or novice inventors. Instead, it appears that the two groups of inventors were similarly a�ected.

Next, we estimate the e�ect of Carnegie libraries on women and immigrants using a version of

Equation 1 with each subgroup’s patent counts as the outcome variable. We infer gender and immig-

rant status using names that we extract from each patent, as described in Section 3, and aggregate the

count of women and immigrant patents to the city-year level. Table 8 presents the results from this

analysis. Panel A shows the results when the count of women patenting is the dependent variable;

Panel B shows analogous results for immigrants. �e results consistently indicate that patenting
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increased for both women (by 0.02–0.04 patents per-city year) and immigrants (by 0.09–0.14 patents

per-city year) a�er receiving a library grants. We also estimate the e�ect of libraries on the share

of women and immigrant patents. As with �rst-time inventors, we see li�le change in these shares,

likely because libraries also impacted non-women and non-immigrants.

Beyond inventor characteristics, we also explore the characteristics of cities that might have

changed how e�ective libraries were at increasing innovation. We estimate versions of Equation 1

that interact the key di�erence-in-di�erences coe�cient with a given city characteristic variable.40

In particular, we separately interact the key di�erence-in-di�erences coe�cient with an indicator for

whether a town had a college and whether it was in the top half of the sample distribution of: youth

in school, imputed income, share cra�smen, share Black, and population. A positive coe�cient in

this table indicates that libraries were more e�ective at increasing patenting when the indicated

condition is satis�ed. For example, a positive coe�cient in the “had college” row would indicate

that Carnegie libraries had a larger e�ect on innovation in cities that had colleges.

�e estimates are presented in Table 9. Overall, we �nd imprecisely estimated but positive com-

plementarity between libraries and the share of youth in school, the share of cra�smen in the labor

force, and the size of the town. While the limited sample size does not give enough statistical power

to detect small heterogeneous e�ects, our results suggest that the e�ects of libraries did not dramat-

ically di�er across the city characteristics considered here.

�ese �ndings relate to the external validity of our results. Because our estimates are generated

from a comparison among cities that applied for Carnegie libraries, we cannot necessarily extrapol-

ate our �ndings to predict what would have happened had non-applicant cities received libraries.

However, Carnegie library recipients were a diverse group, ranging from growing cities like Colum-

bus, Ohio to small rural enclaves like Bayliss, California. �e limited evidence of heterogeneity in

patenting e�ects across multiple dimensions of city characteristics described in this subsection sug-

gests that our results are not limited to speci�c types of cities. Importantly, libraries did not require

an already-educated population or a college to be e�ective—they were impactful even when the

baseline human capital stock or population were lower, consistent with Carnegie’s claim that lib-

raries were “palaces for the people.”
40We fully saturate the interactions, so these models also separately include Built library × covariate and post ×

covariate variables.
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6 Robustness of patenting results

In this section we describe a set of exercises that establish the robustness of our main results. �ese

robustness checks fall into two broad categories: alternative sample selection criteria and alternative

patent measure/speci�cation choices.

Table 10 shows a collection of the key sample robustness checks. �e �rst panel shows results

from Equation 1 for subsets of the baseline sample. First, since the South was slower to build public

good infrastructure during this time period, we show results excluding all Southern states. Next,

we show results excluding Carnegie’s two “home” states for himself and his businesses, respectively

New York and Pennsylvania. �ird, we estimate our baseline model using only 15 or 10 years of

pre-period observations, instead of the 20 years used in our main analysis. Fourth, we exclude a

number of control towns whose stated primary reason for rejecting the grant appears to be �nancial

according to Bobinski (1969). In particular, these cities may have been worried about Carnegie’s

requirement that cities would pledge 10 percent of the cost of the building on an annual basis for

maintenance. Finally, we in turn exclude all cities larger than 15,000 and 5,000 people. �ese two

restrictions test whether the innovation-promoting e�ects of Carnegie libraries also operated in

small towns and rural areas in addition to larger cities. Estimated coe�cients are modestly smaller

(0.079 compared to a baseline estimate of 0.097) when we focus on cities with less than 5,000 people,

consistent with the heterogeneity results described in the previous subsection.

�e second panel of Table 10 shows a similar set of exercises where we instead add cities to

the baseline sample. We re-estimate Equation 1 a�er adding pre-1899 grant cities, high population

cities and counties, control cities that built libraries from local philanthropists, and cities missing

1900 covariates. In the last row of the table, we estimate the baseline model a�er relaxing all sample

selection criteria. In all cases, results are similar to the baseline estimates.

In Table 11 we show a series of robustness checks using alternative speci�cations and patent

measures. First, we show a model that conditions on time-varying log city population.41 Andrews

(2021b) �nds that population growth could explain almost all of the e�ects of colleges on local pat-

enting. By contrast, the results reported in Table 11 suggest that, in the case of libraries, population

growth is not responsible for our results. Next, we show estimates from models that condition on
41We use a subset of cities that have valid population data for this analysis.
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pre-Carnegie measures of county-level union activity that we described in Section 3. In particular,

we condition on the pre-1900 log number of Knights of Labor Assemblies interacted with the post

dummy, the pre-1900 log number of strikers interacted with the post dummy, and both measures

together. We see almost no change in our estimated di�erence-in-di�erences coe�cients, implying

that our results are not driven by di�erences in union behavior that might be correlated with future

patenting. Last, we show results a�er conditioning on whether a city had a college or university

interacted with the post dummy and a�er conditioning on the interaction of the share of children in

school in 1900 and the post dummy. In both cases, we see almost no change in our estimated Library

× Post coe�cient, suggesting that our results are not merely picking up the time-varying e�ects of

pre-existing levels of human capital on innovation.

Next, we show results using two alternative transformations of the number of patents as outcome

variables, the inverse hyperbolic sine of patents and untransformed patent counts. Table 11 shows

that when we use these patent measures, the results are positive and in percentage terms consistent

with or larger than our baseline estimates.42

In Table 11 we also show results from three maximum likelihood models: the Poisson count

model, the zero-in�ated Poisson count model, and the Negative Binomial model.43 For each, we

report the mean marginal e�ect (in patent counts) of the key di�erence-in-di�erences coe�cient. In

each case, results are comparable or larger in percentage terms relative to our baseline log estimates.

To provide further evidence that our results are similar across patent transformations, we es-

timate aggregate versions of our baseline regression models. In particular, we sum the number of

patents for each city before and a�er library grants are made. �us, each city has two observations.

We then take log and inverse hyperbolic sine transformations, as well as estimate the Poisson model

described above. Since we cannot estimate state-year �xed e�ects in these speci�cations, we report

models with city �xed e�ects and city plus state-post period �xed e�ects. Results are shown in Table

A4, and are similar or larger than our baseline estimates.

We demonstrate that our event study results are also robust to alternative speci�cations. Figures

10 and A2 shows that our baseline event study model looks very similar if we use models with
42Tables A2 and A3 report the full set of �xed e�ects speci�cations for the inverse hyperbolic sine transformation

and untransformed patent counts, respectively. �ese tables show a similar pa�ern of results as our main ln(pat + 1)
speci�cations.

43For the zero-in�ated Poisson, we use city population as a predictor of 0-patent status in the secondary estimation
equation.
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alternative sets of �xed e�ects. Similarly, Figures A3, A4, and A5 show that across �xed e�ect

speci�cations, our event studies look similar if we use inverse hyperbolic sine transformations of

our patent variable instead of the ln(pat+ 1) transformation that we use for our baseline analysis.

Similarly, Figure A6 shows that the raw trends in patenting across cities look similar if we use the

patent count outcome instead of logged patents. Figure A7 shows a version of our event study

analysis that uses yearly instead of binned data. �e result is similar to our main result, though

standard errors for point estimates are larger. Figure A8 shows a version of the yearly results where

we use the library opening date (instead of grant dates) as our de�ned treatment start period—our

results are similar.44

Last, Figures A10 and A11 shows that the spillover analysis is also robust to changes to the main

model speci�cation. Figure A10 shows the baseline spillover estimate when using city and year

�xed e�ects. Figure A11 shows the same estimates when we estimate each distance bin separately

as opposed to using nested bins. We �nd very similar pa�erns using this alternative speci�cation.

7 Conclusion

In this paper, we study the rollout of one of the most common institutions in local communities:

the public library. Leveraging the expansion in library services generated by Andrew Carnegie’s

grants in the late 19th and early 20th centuries, we test whether cities that built libraries increased

innovative activity. We �nd that patenting increased by 7-11 percent in cities that built libraries

relative to a new control group of cities that did not build a library despite being deemed eligible

to receive a grant. E�ects peak between 5-15 years a�er library entry, before converging to zero as

patenting became more complex and team-based. Libraries lead to modest patenting spillovers to

nearby towns, suggesting that they were drawing users from outside of their immediate city borders.

We show that our results are not driven by increases in low-quality patenting and are robust to a

wide range of sample, measurement, and estimation choices.

To explain these results, we explore two potential mechanisms. We �nd that increased access

to information and collaboration are potential explanations for our results. In particular, we see

increases in the number of patents that cite prior work a�er libraries are built and our largest e�ects
44Because library opening dates are not observed for cities that did not build a Carnegie library, we assign the opening

date for those cities as two years a�er their grant date—the median time to construction in the Carnegie library sample.
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occur in practical patenting classes that overlap with the types of materials that libraries held. On the

other hand, we see li�le e�ects of libraries in more technical �elds where public library knowledge

is less likely to be useful. We also �nd suggestive evidence that multi-author patenting increased

a�er libraries entered, consistent with libraries serving as gathering places for the community.

Our se�ing provides a unique opportunity to test the hypothesis that information-providing

institutions impact innovation. Unlike many of the technologies and institutions previously studied

in this literature (e.g., the printing press; national science academies), the public library is a distinctly

local institution focused on broadening knowledge access for everyone. Our results show that such

institutions can have meaningful impacts on innovation. �e geographic spread of public libraries

provides a useful historical laboratory to study these channels, but libraries are by no means unique.

While libraries today are unlikely to have the same impact on innovation as they did in the early

20th century, the spread of technical information via the internet and sources like Wikipedia and

Google Patents likely play analogous roles worthy of further study (e.g., �ompson and Hanley,

2018; Derksen et al., 2019).

Our results also motivate a need for more research on the historical and contemporary e�ects

of libraries. While the unique informational role of public libraries has been diminished by the

emergence of the internet, today’s libraries are more community-focused than ever, with programs

aimed at entrepreneurs, job-seekers, children, seniors, and many more. �e rise of these programs

likely reinforce and strengthen the social channel that we documented in the early 20th century. We

hope this work motivates more studies of these library programs and their impacts on cities, both

throughout history and today.
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Figure 1: Share of solo-authored U.S. patents by �ling year
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Notes: �is �gure shows the share of U.S. patents that had a single author, by �ling year. Source: Comprehensive
Universe of U.S. Patents (CUSP) data.

Figure 2: Share of U.S. patents by Cooperative Patent Classi�cation class by decade

0

.2

.4

.6

.8

1

S
h
a
re

 o
f 
to

ta
l 
p
a
te

n
ts

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Human Necessities Ops/transport Mech engineering Chemistry

Textiles Construction Physics Electricity

Notes: �is �gure shows the share of U.S. patents in each Cooperative Patent Classi�cation grouping, by decade. Source:
Comprehensive Universe of U.S. Patents (CUSP) data.

38



Figure 3: Cumulative grant date distribution for Carnegie library and rejector cities
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Notes: �ese �gures show the cumulative distribution of accepted (Panel a) and rejected (Panel b) library cities by year
of Carnegie grant. For cities that received multiple library grants, the earliest grant year is used. Source: Bobinski (1969)
and Jones (1997).
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Figure 4: Map of Carnegie libraries, by location and time of library grant

(a) Granted 1900 and before (b) Granted 1905 and before

(c) Granted 1910 and before (d) Granted 1915 and before

(e) Granted 1920 and before (all libraries)

Notes: �is �gure shows the location of all cities that received a Carnegie library. Each panel shows the location of
Carnegie libraries that were granted before the indicated dates. Source: Bobinski (1969) and Jones (1997).
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Figure 5: Map of all built and rejected Carnegie libraries

Notes: �is �gure shows the locations of all built and rejected Carnegie libraries. Darker dots correspond to libraries
that were granted and built, as indicated in the previous �gures. Red dots with an “X” correspond to cities that rejected
their Carnegie library grant. Source: Bobinski (1969) and Jones (1997).
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Figure 6: Comparison of cities that accepted and rejected libraries
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Notes: �is �gure shows comparisons between cities that accepted and rejected Carnegie libraries. We plot the stand-
ardized coe�cient from a regression of each indicated city-level characteristic on a dummy variable for cities that built a
Carnegie library conditional on state �xed e�ects. We standardize the covariates to have mean zero, standard deviation
one and plot 95 percent con�dence intervals. Covariates include population (measured in the library grant year a�er
residualizing year �xed e�ects) and 1900 values for share of the population that is female, the share of the population in
school, the share of the population that is Black, the share of the population in mining industries, occscore (a measure
of average occupation-industry imputed earnings calculated using the Saavedra-Twinam algorithm), and the average
age.
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Figure 7: Covariate comparisons across cities that accepted and did not apply for libraries
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Notes: �is �gure shows comparisons between cities that accepted did not apply for Carnegie libraries. We plot the
standardized coe�cient from a regression of each indicated city-level characteristic on a dummy variable for cities that
built a Carnegie library conditional on state �xed e�ects. We standardize the covariates to have mean zero, standard
deviation one and plot 95 percent con�dence intervals. Covariates include population (measured in the library grant
year a�er residualizing year �xed e�ects) and 1900 values for the share of the population that is female, the share of the
population in school, the share of the population that is Black, the share of the population in mining industries, occscore
(a measure of average occupation-industry imputed earnings calculated using the Saavedra-Twinam algorithm), and the
average age.
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Figure 8: Patents per city-year in cities that did and did not build libraries a�er library grants
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Notes: �is �gure shows the mean patenting counts across cities that received a Carnegie library and cities that were
approved for a Carnegie grant but did not build a library a�er residualizing on grant date �xed e�ects. Averages are
plo�ed by years relative to grant dates. �e �rst line re�ects library grant dates. �e second dashed line illustrates that
the mean time from library grants to when libraries were �nished and opened to the public was three years.
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Figure 9: Event study estimates of Carnegie library receipt on city patenting
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Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library grant dates. �e reported coe�cients re�ect �ve year bins containing the labelled
relative year and the four following years. For example, the bin labeled 5 contains the 5th-9th years a�er library grants.
�e coe�cients are generated from interactions between a built library indicator and each �ve year increment, condi-
tional on state-year and city �xed e�ects. �e excluded category is 5 to 1 years before library grant dates. Standard
errors are clustered at the city level and 90 percent con�dence intervals are shown.
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Figure 10: Event study estimates of Carnegie library receipt on city patenting, alternative speci�c-
ations
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(a) Conditional on city and grant year-year �xed e�ects
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(b) Conditional on city, grant year-year, and state-year �xed e�ects

Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library grant dates. �e coe�cients are generated from interactions between a build library
indicator and each �ve year increment, conditional on the indicated �xed e�ects. Standard errors are clustered at the
city level and 90 percent con�dence intervals are graphed.
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Figure 11: Spillover e�ects of Carnegie libraries on patenting in nearby towns
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Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library on patenting in nearby town. �e le�most
estimate is the baseline di�erence-in-di�erences estimate from regression Equation 1 conditional on city and state-year
�xed e�ects. �is estimate re�ects a comparison of Carnegie and rejecting cities before and a�er grant dates. �e
remaining three estimates are for identically speci�ed models with increasingly geographically dispersed treatment and
control groups. In particular, treatment cities for the spillover regressions are de�ned as cities within the indicated
number of miles from a Carnegie library. Control cities are de�ned as cities within the indicated number of miles from a
rejected library and not within that distance from a Carnegie library. �e Carnegie library receiving and rejecting cities
themselves are excluded from all spillover samples. All standard errors are clustered at the grant-receiving-city level.
90 percent con�dence intervals are shown.
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Table 1: E�ect of Carnegie libraries on patenting

(1) (2) (3) (4) (5) (6) (7) (8)
Full sample
Built library × post 0.081 0.082 0.076 0.075 0.074 0.113 0.097 0.076

(0.036) (0.036) (0.035) (0.035) (0.036) (0.039) (0.037) (0.038)
Pre-1929 sample
Built library × post 0.111 0.106 0.100 0.095 0.078 0.143 0.104 0.082

(0.037) (0.037) (0.036) (0.036) (0.035) (0.041) (0.037) (0.038)
State FE X X X X X X X
Grant year FE X X X X
Cal. year FE X X X X X X
1900 covariates X
City FE X X X
State-year FE X X X
Grant-Cal. year FE X

Mean ln(pat+1) 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817
Observations 54,573 54,573 54,573 54,573 54,573 54,573 54,573 54,573
Cities 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. �e estimates are from versions of Equation 1, using a sample window of 20 years
before and a�er Carnegie grants (�rst panel) or 20 years before Carnegie grants until 1929 (second panel). Built library
indicates cities that built a Carnegie library. Post indicates years a�er cities received Carnegie library grants. Post is
de�ned for all cities, since every city in our sample received a Carnegie library grant. If a city received multiple grants,
Post indicates the earliest grant year. �e outcome variable is ln(patents+1). Each observation is a city-year. Standard
errors are shown in parentheses and clustered by city.
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Table 2: E�ect of Carnegie libraries on measures of patent quality

(1) (2) (3) (4) (5) (6) (7) (8)

Had forward citation
Built library × post 0.040 0.040 0.044 0.043 0.043 0.066 0.059 0.043

(0.018) (0.018) (0.018) (0.018) (0.018) (0.019) (0.019) (0.019)

Count citations
Built library × post 1.183 1.184 1.255 1.243 1.230 2.558 2.578 1.542

(0.619) (0.620) (0.624) (0.624) (0.626) (0.711) (0.765) (0.748)

Had top innovative pat.
Built library × post -0.009 -0.009 -0.008 -0.008 -0.008 0.010 0.007 -0.002

(0.012) (0.012) (0.012) (0.012) (0.012) (0.013) (0.013) (0.013)

State FE X X X X X X X
Grant year FE X X X X
Cal. year FE X X X X X X
1900 covariates X
City FE X X X
State-year FE X X X
Grant-Cal. year FE X

Mean had forward citation 0.304 0.304 0.304 0.304 0.304 0.304 0.304 0.304
Mean forward citations 2.830 2.830 2.830 2.830 2.830 2.830 2.830 2.830
Mean had top innovative pat. 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084
Observations 54,573 54,573 54,573 54,573 54,573 54,573 54,573 54,573
Cities 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on measures of patent quality. �e estimates are from versions
of Equation 1, using a sample window of 20 years before and a�er Carnegie grants. Built library indicates cities that built
a Carnegie library. Post indicates years a�er cities received Carnegie library grants. Post is de�ned for all cities, since
every city in our sample received a Carnegie library grant. If a city received multiple grants, Post indicates the earliest
grant year. �e outcome variable is the indicated measure of patent quality: either the probability of observing a patent
that received a forward citation in the future, the count of forward citations that patents in that city-year generated, or
the probability of observing a patent in the top 10 percentile of the measure developed by Kelly et al. (2021). Standard
errors are shown in parentheses and clustered by city.
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Table 3: Di�erence-in-di�erences estimates by patent classes

Cooperative Patent Classi�cation Library × post coe�cient Standard error
Human necessities 0.051 (0.018)
Performing ops/transport 0.093 (0.022)
Chemistry 0.013 (0.020)
Textiles 0.010 (0.010)
Constructions 0.043 (0.014)
Mech. engineering 0.075 (0.019)
Physics 0.017 (0.014)
Electricity 0.038 (0.013)

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. Each row represents a separate estimate of the baseline model in Equation 1 with
ln(patents + 1) for the indicated Cooperative Patent Classi�cation as the outcome variable. All models include city
and state-year �xed e�ects. Standard errors are clustered by city.

Table 4: E�ect of Carnegie libraries on patents that cite past books, magazines, or patents

Dependent variable and sample Library × post Std. error Mean of outcome
Observe a work-citing patent

Full sample 0.0053 (0.0038) 0.0121
Pre-1929 sample 0.0061 (0.0037) 0.0117
Pre-1925 sample 0.0073 (0.0036) 0.0114

# work-citing patents
Full sample 0.0110 (0.0066) 0.0171
Pre-1929 sample 0.0114 (0.0060) 0.0159
Pre-1925 sample 0.0119 (0.0059) 0.0154

Notes: �is table shows results from our baseline model estimating the e�ect of Carnegie libraries on the probability of
observing a prior-work citing patent and the number of patents that cite prior work. �e procedure for identifying such
patents is discussed in Section 3. All models include city and state-year �xed e�ects and standard errors are clustered
by city.

50



Table 5: E�ect of Carnegie libraries on multi-authored patenting

Dependent variable and sample Library × post Std. error Mean of outcome
Observe a multi-author patent

Full sample 0.0194 (0.0143) 0.1735
Pre-1929 sample 0.0221 (0.0147) 0.1760
Pre-1925 sample 0.0257 (0.0150) 0.1780

# multi-author patents
Full sample 0.1132 (0.0401) 0.2637
Pre-1929 sample 0.1085 (0.0365) 0.2625
Pre-1925 sample 0.1143 (0.0369) 0.2640

Notes: �is table shows results from our baseline model estimating the e�ect of Carnegie libraries on the probability of
observing a multi-author patent and the number of multi-author patents. �e procedure for identifying such patents is
discussed in in Section 3. All models include city and state-year �xed e�ects and standard errors are clustered by city.
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Table 6: E�ect of Carnegie libraries on patenting, extensive margin (Pat > 0)

(1) (2) (3) (4) (5) (6) (7) (8)
Full sample
Built library × post 0.025 0.025 0.022 0.022 0.022 0.015 0.005 0.014

(0.019) (0.019) (0.019) (0.019) (0.019) (0.020) (0.020) (0.020)
Pre-1929 sample
Built library × post 0.036 0.034 0.031 0.029 0.022 0.024 0.004 0.014

(0.019) (0.019) (0.019) (0.019) (0.019) (0.021) (0.020) (0.020)
State FE X X X X X X X
Grant year FE X X X X
Cal. year FE X X X X X X
1900 covariates X
City FE X X X
State-year FE X X X
Grant-Cal. year FE X

Mean Pr(Pat > 0) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600
Observations 54,573 54,573 54,573 54,573 54,573 54,573 54,573 54,573
Cities 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. �e estimates are from versions of Equation 1. Built library indicates cities that built
a Carnegie library. Post indicates years a�er cities received Carnegie library grants. Post is de�ned for all cities, since
every city in our sample received a Carnegie library grant. If a city received multiple grants, Post indicates the earliest
grant year. �e outcome variable is Pr(Patents > 0). Each observation is a city-year. Standard errors are shown in
parentheses and clustered by city.
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Table 7: E�ect of Carnegie libraries on patenting, extensive margin (�rst-time inventors)

(1) (2) (3) (4) (5) (6) (7) (8)
First-time inventors
Built library × post 0.294 0.294 0.287 0.283 0.280 0.379 0.356 0.205

(0.102) (0.102) (0.101) (0.101) (0.102) (0.104) (0.105) (0.109)
Share �rst-time
Built library × post -0.006 -0.008 -0.005 -0.005 -0.009 -0.011 -0.012 -0.008

(0.016) (0.016) (0.016) (0.016) (0.017) (0.017) (0.017) (0.018)
State FE X X X X X X X
Grant year FE X X X X
Cal. year FE X X X X X X
1900 covariates X
City FE X X X
State-year FE X X X
Grant-Cal. year FE X

Mean �rst-time count 1.350 1.350 1.350 1.350 1.350 1.350 1.350 1.350
Mean share �rst-time 0.626 0.626 0.626 0.626 0.626 0.626 0.626 0.626
Observations 54,573 54,573 54,573 54,573 54,573 54,573 54,573 54,573
Cities 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. �e estimates are from versions of Equation 1. Built library indicates cities that built
a Carnegie library. Post indicates years a�er cities received Carnegie library grants. Post is de�ned for all cities, since
every city in our sample received a Carnegie library grant. If a city received multiple grants, Post indicates the earliest
grant year. �e outcome variable is indicated in each panel. Each observation is a city-year. Standard errors are shown
in parentheses and clustered by city.
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Table 8: E�ect of Carnegie libraries on women and immigrant patenting

(1) (2) (3) (4) (5) (6) (7) (8)
Women
Built library × post 0.026 0.026 0.025 0.025 0.024 0.041 0.042 0.026

(0.012) (0.012) (0.012) (0.012) (0.012) (0.013) (0.015) (0.014)
Immigrants
Built library × post 0.092 0.092 0.090 0.089 0.089 0.141 0.137 0.095

(0.023) (0.023) (0.022) (0.022) (0.022) (0.028) (0.031) (0.030)
State FE X X X X X X X
Grant year FE X X X X
Cal. year FE X X X X X X
1900 covariates X
City FE X X X
State-year FE X X X
Grant-Cal. year FE X

Mean women patents 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
Mean immigrant patents 0.226 0.226 0.226 0.226 0.226 0.226 0.226 0.226
Observations 54,573 54,573 54,573 54,573 54,573 54,573 54,573 54,573
Cities 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to build
a library but did not do so. �e estimates are from versions of Equation 1, using a sample window of 20 years before and
a�er Carnegie grants. Built library indicates cities that built a Carnegie library. Post indicates years a�er cities received
Carnegie library grants. Post is de�ned for all cities, since every city in our sample received a Carnegie library grant.
If a city received multiple grants, Post indicates the earliest grant year. �e outcome variable is the count of patents
for women (�rst panel) and immigrants (second panel), each identi�ed using the name-based procedure described in
Section 3. Each observation is a city-year. Standard errors are shown in parentheses and clustered by city.

Table 9: Heterogeneity in library di�erence-in-di�erences estimates across city characteristics

Coe�cient Estimate Standard error
Built library × post × had college 0.039 (0.141)
Built library × post × share in-school top half 0.084 (0.067)
Built library × post × imputed income top half 0.017 (0.070)
Built library × post × share cra�smen top half 0.071 (0.073)
Built library × post × share Black top half 0.008 (0.068)
Built library × post × population top half 0.114 (0.073)

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. Each row represents a separate estimate of the baseline model in Equation 1 with
ln(patents + 1) for the as the outcome variable. All models include city and state-year �xed e�ects. Coe�cients are
the triple interaction between each indicated variable, an indicator for whether the city built a Carnegie library, and
an indicator variable for years a�er library grants were made. All interactions are fully saturated—each model also
includes the indicated city characteristic, the interaction of the indicated city characteristic and the post variable, and
the interaction of the city characteristic with the built library variable. Standard errors are clustered by city.
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Table 10: Robustness of di�erence-in-di�erences patent results to alternative samples

Speci�cation Library × post Std. error Cities
Baseline model 0.097 (0.037) 1,368
Excluding observations from the baseline sample
Exclude Southern states 0.120 (0.041) 1,196
Exclude New York and Pennsylvania 0.082 (0.038) 1,289
15 year pre-period 0.086 (0.036) 1,368
10 year pre-period 0.085 (0.036) 1,368
Exclude “�nance” motivated rejectors 0.093 (0.045) 1,318
Exclude cities larger than 15,000 people 0.080 (0.038) 1,267
Exclude cities larger than 5,000 people 0.079 (0.039) 922
Adding observations to the baseline sample
Include pre-1899 grants 0.092 (0.037) 1,374
Include large population cities/counties 0.120 (0.038) 1,466
Include control cities with local library philanthropists 0.092 (0.035) 1,389
Include cities missing 1900 covariates 0.072 (0.038) 1,470
Include all cities 0.089 (0.036) 1,602

Notes:�is table shows results from our baseline model with state-year and city �xed e�ects estimated on di�erent
samples of the data. �e �rst panel shows results a�er excluding observations from the baseline sample, while the
second panel shows results a�er including additional observations into the baseline sample. �e 15 and 10-year pre-
period labels indicate regressions where we restrict the pre-period to 15 and 10 years before the libraries were granted,
instead of the 20 year pre-period that we use in our baseline analysis.
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Table 11: Robustness of di�erence-in-di�erences results to alternative patent measures and estima-
tion strategies

Dependent variable and estimation strategy Library × post Std. error Cities
Speci�cation robustness

Baseline ln(pat+ 1) model 0.097 (0.037) 1,368
Condition on time-varying log population 0.087 (0.035) 1,353
Condition on Post × Strikers 0.094 (0.037) 1,368
Condition on Post × KoL Assembles 0.094 (0.037) 1,368
Condition on Post × Strikers & Post × KoL Assembles 0.094 (0.038) 1,368
Condition on Post × Had College 0.092 (0.037) 1,368
Condition on Post × Share kids in school (1900) 0.100 (0.037) 1,368

Outcome measurement robustness
Patent measure: ihs(patents) 0.112 (0.046) 1,368
Patent measure: patent counts 1.375 (0.334) 1,368
Marginal e�ect (count) from Poisson model 0.530 (0.291) 1,368
Marginal e�ect (count) from Poisson model, no city FE 1.257 (0.255) 1,368
Marginal e�ect (count) from Zero-in�ated Poisson model 0.897 (0.252) 1,368
Marginal e�ect (count) from Negative Binomial model 0.621 (0.233) 1,368

Notes: �is table shows results from our baseline model using di�erent outcome variables and estimation strategies.
KoL stands for the Knights of Labor. �e number of pre-1900 strikers and KoL assemblies are measured at the county
level in logs and are measured using the data collected by Bi�arello (2019). �e variable Had College is an indicator for
whether a city had a college in 1900, sourced from the 1900-1901 academic year version of the Report of the Commission
of Education published by the U.S. Bureau of Education. �e baseline model conditions on state-year and city �xed
e�ects. �e zero-in�ated Poisson and negative binomial models exclude state-year �xed e�ects to allow convergence.
All standard errors are clustered by city.
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A Figures and tables for online publication

Figure A1: Distribution of time required to construct libraries a�er library grants
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Notes: �is �gure shows the distribution of time (measured in years) between library grants and the libraries being
opened to the public. �e distribution is top-coded at 15 years. �e average construction time was 3 years but the most
frequent construction times were 1 or 2 years.
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Figure A2: Event study estimates of Carnegie library receipt on city patenting, alternative log spe-
ci�cations
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(a) Conditional on city �xed e�ects
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(b) Conditional on city and year �xed e�ects

Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library grant dates. �e coe�cients are generated from interactions between a built library
indicator and each �ve year increment, conditional on the indicated �xed e�ects.
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Figure A3: Event study estimates of Carnegie library receipt on city patenting, inverse hyperbolic
sine speci�cation
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Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library grant dates. �e reported coe�cients re�ect �ve year bins containing the labelled
relative year and the four following years. For example, the bin labeled 5 contains the 5th-9th years a�er library grants.
�e coe�cients are generated from interactions between a built library indicator and each �ve year increment, condi-
tional on state-year and city �xed e�ects. �e excluded category is 5 to 1 years before library grant dates. Standard
errors are clustered by cities and 90 percent con�dence intervals are shown.
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Figure A4: Event study estimates of Carnegie library receipt on city patenting, alternative inverse
hyperbolic sine speci�cations
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(a) Conditional on city and grant year-year �xed e�ects
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(b) Conditional on city, grant year-year, and state-year �xed e�ects

Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library grant dates. �e coe�cients are generated from interactions between a built library
indicator and each �ve year increment, conditional on the indicated �xed e�ects. Standard errors are clustered at the
city level and 90 percent con�dence intervals are shown
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Figure A5: Event study estimates of Carnegie library receipt on city patenting, additional inverse
hyperbolic sine speci�cations

−.1

0

.1

.2
IH

S
(p

a
te

n
ts

) 
p
e
r 

c
it
y
−

y
e
a
r

−20 −15 −10 −5 0 5 10 15 20 25+

Years relative to library grant

(a) Conditional on city �xed e�ects
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(b) Conditional on city and year �xed e�ects

Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library grant dates. �e coe�cients are generated from interactions between a built library
indicator and each �ve year increment, conditional on the indicated �xed e�ects. Standard errors are clustered at the
city level and 90 percent con�dence intervals are shown
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Figure A6: Patents per city-year in cities that did and did not build libraries a�er library grants,
patent counts
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Notes: �is �gure shows the mean patenting counts across cities that received a Carnegie library and cities that were
approved for a Carnegie grant but did not build a library a�er residualizing on grant date �xed e�ects. Averages are
plo�ed by years relative to grant dates. �e �rst line re�ects library grant dates. �e second dashed line illustrates that
the mean time from library grants to when libraries were �nished and opened to the public was three years.
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Figure A7: Event study estimates of Carnegie library receipt on city patenting, yearly estimates

Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library grant dates. �e coe�cients are generated from interactions between a built library
indicator and relative year dummy variables, conditional on state-year and city �xed e�ects. �e excluded category is
the year of the library grants. �e red dashed line indicates that the mean time from library grants to when libraries
were �nished and opened to the public was three years. Standard errors are clustered at the city level and 90 percent
con�dence intervals are shown.
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Figure A8: Event study estimates of Carnegie library receipt on city patenting, yearly estimates
using opening dates

Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library relative to rejecting a library on patenting
in the years before and a�er library opening dates. For rejecting cities and libraries missing build days, we impute
the build time as two years (the median of non-missing observations). �e reported coe�cients re�ect �ve year bins
containing the labelled relative year. �e coe�cients are generated from interactions between a built library indicator
and relative year dummy variables, conditional on state-year and city �xed e�ects. �e excluded category is the year of
the library opening. Standard errors are clustered at the city level and 90 percent con�dence intervals are shown.
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Figure A9: Spillover e�ects of Carnegie libraries on patenting in nearby towns, non-intersecting
distance bins
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Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library on patenting in nearby town. �e le�most
estimate is the baseline di�erence-in-di�erences estimate from regression Equation 1 conditional on city and state-year
�xed e�ects. �is estimate re�ects a comparison of Carnegie and rejecting cities before and a�er grant dates. �e
remaining three estimates are for identically speci�ed models with increasingly geographically dispersed treatment and
control groups. In particular, treatment cities for the spillover regressions are de�ned as cities within the indicated
number of miles from a Carnegie library. Control cities are de�ned as cities within the indicated number of miles from a
rejected library and not within that distance from a Carnegie library. �e Carnegie library receiving and rejecting cities
themselves are excluded from all spillover samples. All standard errors are clustered at the grant-receiving-city level.
90 percent con�dence intervals are shown.
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Figure A10: Spillover e�ects of Carnegie libraries on patenting in nearby towns, city and year �xed
e�ects
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Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library on patenting in nearby town. �e le�most
estimate is the baseline di�erence-in-di�erences estimate from regression Equation 1 conditional on city and year �xed
e�ects. �is estimate re�ects a comparison of Carnegie and rejecting cities before and a�er grant dates. �e remaining
three estimates are for identically speci�ed models with increasingly geographically dispersed treatment and control
groups. In particular, treatment cities for the spillover regressions are de�ned as cities within the indicated number of
miles from a Carnegie library. Control cities are de�ned as cities within the indicated number of miles from a rejected
library and not within that distance from a Carnegie library. �e Carnegie library receiving and rejecting cities them-
selves are excluded from all spillover samples. All standard errors are clustered at the grant-receiving-city level. 90
percent con�dence intervals are shown.
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Figure A11: Spillover e�ects of Carnegie libraries on patenting in nearby towns, city and year �xed
e�ects, non-intersecting distance bins

−.1

−.05

0

.05

.1

.15

B
u
ilt

 l
ib

ra
ry

 x
 p

o
s
t 
c
o
e
ff
ic

ie
n
t

0 miles (baseline) 0<x<15 miles 15<x<30 miles 30<x<45 miles

Distance from an accepted or non−built Carnegie city

Notes: �is �gure shows the marginal e�ects of receiving a Carnegie library on patenting in nearby town. �e le�most
estimate is the baseline di�erence-in-di�erences estimate from regression Equation 1 conditional on city and year �xed
e�ects. �is estimate re�ects a comparison of Carnegie and rejecting cities before and a�er grant dates. �e remaining
three estimates are for identically speci�ed models with increasingly geographically dispersed treatment and control
groups. In particular, treatment cities for the spillover regressions are de�ned as cities within the indicated number of
miles from a Carnegie library. Control cities are de�ned as cities within the indicated number of miles from a rejected
library and not within that distance from a Carnegie library. �e Carnegie library receiving and rejecting cities them-
selves are excluded from all spillover samples. All standard errors are clustered at the grant-receiving-city level. 90
percent con�dence intervals are shown.
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Table A1: Summary statistics

Mean Std. dev. Min. Max.
City-year variables (N = 54,573)
ln(patents+ 1) 0.817 0.870 0.000 5.207
ihs(patents) 1.042 1.087 0.000 5.894
Patent count 2.715 6.126 0.000 181.500
Female patents 0.100 0.340 0.000 14.125
Immigrant patents 0.226 0.565 0.000 16.959
Observed a patent that cited prior work 0.012 0.109 0.000 1.000
Patents that cite prior work 0.017 0.191 0.000 18.000
Observed a multi-inventor patent 0.173 0.379 0.000 1.000
Multi-inventor patents 0.264 0.872 0.000 37.000
Forward citations 2.830 12.381 0.000 694.833
Had a forward citation 0.304 0.460 0.000 1.000
Had a p90 breakthrough patent 0.084 0.278 0.000 1.000
Count �rst-time patents 1.350 2.475 0.000 61.500
1900 time-invariant variables (N = 1,368)
Built Carnegie library 0.877 0.328 0.000 1.000
Share in-school 0.619 0.127 0.025 0.919
Share Black 0.055 0.135 0.000 1.000
Share female 0.493 0.036 0.204 0.570
Share miner 0.016 0.058 0.000 0.708
Occupation-industry earnings proxy 17.982 2.495 5.336 24.800
Population (log) 8.122 0.971 4.419 10.295
Average age 27.386 2.658 18.759 40.471
Share professional 0.079 0.033 0.000 0.316
Share managers 0.091 0.040 0.000 0.293
Share cra�smen 0.151 0.058 0.000 0.412
Share skilled operators 0.136 0.086 0.000 0.752
Strikers (county) 536.099 3401.175 0.000 76949.000
Knights of Labor Assemblies (county) 2.656 9.565 0.000 152.000
Had college 0.097 0.296 0.000 1.000

Notes: �is table shows summary statistics for the main variables and sample used in this paper. �e construction of
these data is described in Section 3 and Appendix B.
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Table A2: E�ect of Carnegie libraries on patenting, inverse hyperbolic sine

(1) (2) (3) (4) (5) (6) (7) (8)
Full sample
Built library × post 0.097 0.098 0.091 0.089 0.088 0.133 0.112 0.089

(0.045) (0.045) (0.044) (0.044) (0.044) (0.048) (0.046) (0.047)
Pre-1929 sample
Built library × post 0.135 0.128 0.120 0.115 0.094 0.169 0.120 0.096

(0.046) (0.046) (0.045) (0.044) (0.044) (0.050) (0.046) (0.047)
State FE X X X X X X X
Grant year FE X X X X
Cal. year FE X X X X X X
1900 covariates X
City FE X X X
State-year FE X X X
Grant-Cal. year FE X

Mean ihs(pat) 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042
Observations 54,573 54,573 54,573 54,573 54,573 54,573 54,573 54,573
Cities 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. �e estimates are from versions of Equation 1, using a sample window of 20 years
before and a�er Carnegie grants (�rst panel) or 20 years before Carnegie grants until 1929 (second panel). Built library
indicates cities that built a Carnegie library. Post indicates years a�er cities received Carnegie library grants. Post is
de�ned for all cities, since every city in our sample received a Carnegie library grant. If a city received multiple grants,
Post indicates the earliest grant year. �e outcome variable is ihs(patents). Each observation is a city-year. Standard
errors are shown in parentheses and clustered by city.

69



Table A3: E�ect of Carnegie libraries on patenting, patent counts

(1) (2) (3) (4) (5) (6) (7) (8)
Full sample
Built library × post 0.846 0.848 0.825 0.814 0.805 1.379 1.375 0.970

(0.255) (0.255) (0.251) (0.251) (0.252) (0.315) (0.335) (0.328)
Pre-1929 sample
Built library × post 0.988 0.958 0.934 0.901 0.822 1.525 1.409 0.987

(0.272) (0.270) (0.267) (0.266) (0.258) (0.336) (0.343) (0.336)
State FE X X X X X X X
Grant year FE X X X X
Cal. year FE X X X X X X
1900 covariates X
City FE X X X
State-year FE X X X
Grant-Cal. year FE X

Mean patents 2.715 2.715 2.715 2.715 2.715 2.715 2.715 2.715
Observations 54,573 54,573 54,573 54,573 54,573 54,573 54,573 54,573
Cities 1,368 1,368 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. �e estimates are from versions of Equation 1, using a sample window of 20 years
before and a�er Carnegie grants (�rst panel) or 20 years before Carnegie grants until 1929 (second panel). Built library
indicates cities that built a Carnegie library. Post indicates years a�er cities received Carnegie library grants. Post is
de�ned for all cities, since every city in our sample received a Carnegie library grant. If a city received multiple grants,
Post indicates the earliest grant year. �e outcome variable is the count of patents. Each observation is a city-year.
Standard errors are shown in parentheses and clustered by city.

Table A4: E�ect of Carnegie libraries on patenting (aggregated model)

ln(pat+ 1) ihs(pat) Poisson (count)
Built library × post 0.131 0.185 0.143 0.198 11.996 14.548

(0.072) (0.075) (0.080) (0.084) (5.598) (6.004)
City FE X X X X X X
State FE X X X X X X
State FE - Post FE X X X

Mean patent measure 3.163 3.163 3.766 3.766 54.147 54.147
Observations 2,736 2,736 2,736 2,736 2,736 2,736
Cities 1,368 1,368 1,368 1,368 1,368 1,368

Notes: �is table shows the impact of Carnegie libraries on patenting relative to a set of cities that were approved to
build a library but did not do so. �e estimates in this table are from a model that sums all patents in each city before
and a�er they received a library grant, such that each city in the sample has two observations. �e di�erent columns
correspond to alternative outcome variable transformations or estimation strategies that are used on the aggregated
data.
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B Data appendix

In this appendix we provide additional information on the data used in this project. �is appendix

supplements Section 3, which describes the core details of the data construction.

B.1 Library data

Our data on Carnegie library locations comes from multiple sources. �e �rst two are books by

library historians. First, we use Bobinski (1969), who was the �rst to systematically record the loc-

ation of Carnegie libraries in his seminal work. We compare this list to our second source, Jones

(1997)—who identi�ed a few additional libraries and updated the grant dates in a handful of cases.

When dates di�er, we undertake research using library websites to determine who was correct, and

use the proper date. Finally, as a check, we compare our data to other compiled sources of Carnegie

libraries. �ese sources include Wikipedia—where editors maintain information about each Carne-

gie library in the U.S., including whether or not the building is still a library today — and regional

websites like “California Libraries of California.”45 Since the primary source of these compilations

are the same library historians that we use, our data aligns with those sources. Our data on rejected

libraries—and the reasons cities may have not built libraries—comes from Bobinski (1969), supple-

mented by our research using the original Carnegie library correspondence. �is correspondence

was obtained from the Carnegie Collations at the Rare Book and Manuscript Library at Columbia

University in New York City.

A limitation of prior scholarship on Carnegie libraries is dating library openings. While we have

excellent data on when Carnegie approved cities for library grants—because le�ers were standard-

ized and were archived by the Carnegie Corporation—data on when libraries were actually con-

structed and open to the public was not centrally tracked. �is timing is important for our analysis,

since we would not expect to see any e�ects of library construction on innovation before libraries

actually opened. We compile new data on the universe of library openings by searching library

websites, state historical associations, and newspapers. Since the last Carnegie grant was given in

1919, most still-standing buildings have celebrated their 100th anniversary in the last two decades.

�ese anniversaries typically generate local newspaper stories which contain information about the
45�e website is h�ps://www.carnegie-libraries.org
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opening date, and are a primary source for our opening dates. We also called a number of libraries

and received information directly from sta�. A few libraries (roughly 5 percent of the total) could

not be assigned opening dates. �ese are most o�en small libraries that were torn down. We use

information on library opening dates to calculate the average time to library opening (3 years) and

con�rm that the timing of our e�ects is consistent with construction timing.

B.2 Patent data

Inventor names disambiguation

We assign each inventor who �led a patent between 1860 and 1960 a unique ID based on name

similarity and their city of residence as reported in the patent text. For each inventor, we check if

there is another inventor whose �rst names start with the same le�er and whose full names satisfy

the following condition:

round

((
2 ∗ M

T

)
× 100

)
≥ 90

where M is the number of matches and T is the length of both names. We only match names if

they �led a patent within 10 years and lived within 50 km of each other or within 5 years and lived

within 400 km of each other. We do this to take into consideration, particularly at the beginning of

the sample, inventors who moved from the country to the city. �e unique IDs allow us to identify

the �rst year in which each inventor �led a patent. A limitation of this approach is that if inventors

move further away, we risk re-classifying them as a new inventor. On the other hand, se�ing a

larger distance radius risks combining otherwise distinct inventions with the name same. Manual

inspections suggest that the 400km rule strikes a good balance between these two concerns, and

we have veri�ed that our central �ndings are not sensitive to alternative, reasonable choices of a

distance threshold.

Identify citing patents

To identify the patents that cite prior materials (books, magazines, patents), we �rst identify a set

of terms that are likely to be associated to those materials (e.g., encyclopedia, handbook, dictionary,

etc.). We then search the corpus of patents and identify those that mention these keywords. We

manually review the matches and extend the set of keywords based on our matches. �is process

is repeated until we are unable to identify new terms. We report below the list of keywords that
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we identi�ed, together with the punctuation and matching rules that allow us to minimize false

positives. O�en we require that a keyword is followed by a number (e.g., page). When we do so, we

match when the numbers are multiples of �ve. �is is because historical patents report line numbers

(in multiples of 5) in the margins, and the OCR process o�en digitizes and adds them to the text.

Our �nal keywords are: pages (or pp.) followed by a number; volume (vol., vol;, or yol.) followed

by a number (and not Austria, Italy, or Italian within 100 characters);46 published by; published in;

publishers; , edition; edition ,; edited by; cyclopedia; cyclopaedia; dictionary; his book; his article; their

article; his journal; quoted from; chapter followed by number; britannica; technical journal; hand-

book; chemical society; institute of ; society of ; proceedings of the; bulletin of the; textbook; scienti�c

american; prior patent; earlier patent

Technology classes

We use technological classes to study the impact of libraries on patents in di�erent scienti�c

applications. �e USPTO regularly updates its classi�cations for both new patents and retroactively

for older patents. It then publishes these classi�cations on their website, where we obtain the data.

�e CUSP uses classi�cations published in June 2016. We use the CPC (Cooperative Patent Classi-

�cation) standard, which has eight main subgroups: “Human Necessities”, “Performing Operations;

Transporting”, “Chemistry; Metallurgy”, “Textiles; Paper”, “Fixed Constructions”, “Mechanical En-

gineering; Lighting; Heating; Weapons; Blasting”, “Physics”, and “Electricity.”47

46We exclude the matches that have Austria, Italy, and Italian within 100 words because they usually refer to citations
to patents from those countries. We believe that foreign patent citations are unlikely to be related to materials contained
in libraries.

47�e full taxonomy of classi�cations can be found at the USPTO website, ht-
tps://www.uspto.gov/web/patents/classi�cation/cpc/html/cpc.html.
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